瞧!这些发明算法的人

发明量子多体问题算法的人,多与普通人不同。他们身上有一种得道高僧、终南隐士的先知之气,往往想要扬弃和重新评价流俗所看重的种种价值观念,率性而为以至于不被社会所理解,甚至被视为狂士和疯子。这其中的原因,恐怕还是来自于在量子多体问题中发明算法本身的难度。Continue reading

Correlation-Induced Insulating Topological Phases at Charge Neutrality in Twisted Bilayer Graphene

Twisted bilayer graphene (TBG) consists of two stacked layers of graphene rotated relative to one another. With a twist angle of about 1.10° the so-called “magic” angle, many unconventional electronic behaviors emerge, including superconductivity and correlated insulators, a type of insulating phase that arises from interactions between electrons. Elucidating the mechanism responsible for these electronic states in magic-angle TBG is a problem at the frontier of quantum materials research. To help solve this problem, we employ an unbiased quantum many-body numerical method (quantum Monte Carlo simulations) to investigate the possible insulating phases of TBG. Continue reading "Correlation-Induced Insulating Topological Phases at Charge Neutrality in Twisted Bilayer Graphene"

Evidence of the topological KT phase of TMGO

Quantum materials are becoming the cornerstone for the continuous prosperity of human society, including the next-generation AI computing chips that go beyond Moore’s law, the high-speed Maglev train, and the topological unit for quantum computers, etc. However, these complicated systems require modern computational techniques and advanced analysis to reveal their microscopic mechanism. Continue reading

The search of non-Fermi liquid

Three passions, simple but overwhelmingly strong, have governed my life: the longing for love, the search of knowledge, and unbearable pity for the suffering of mankind.

—Bertrand Russell

As Russell nicely put it, scientists are often driven by strong passions for the search of knowledge, such search not only benefits the human society, but often times brings the ecstasy to themselves -- the ecstasy for instance of understanding the hearts of men, knowing why the stars shine, and apprehending the Pythagorean power by which number holds sway above the flux -- that is so great that scientists would often have endured the long hours of working and sleepless nights for the pursuit of such joy. Continue reading "The search of non-Fermi liquid"

非费米液体的追寻

 夫人之相与,俯仰一世,或取诸怀抱,
悟言一室之内;或因寄所托,放浪形骸之外。
虽趣舍万殊,静躁不同,当其欣于所遇,
暂得于己,快然自足,不知老之将至。

——王羲之《兰亭集序》

人的一辈子,乱乱哄哄、热热闹闹,其实很快就过去了。浮名与虚誉、诱惑与利益,很多时候更是在加速这个过程。时间积分之后,烦恼总是大于欢欣的。这样一个悖论,古今中外多少人都看得明白,比如大书法家王羲之,其所言如上所抄录很是通透。Continue reading

Quantum Material research connecting physicists in Hong Kong, Beijing and Shanghai


A joint research team from The University of Hong Kong (HKU), Institute of Physics at Chinese Academy of Science, Songshan Lake Materials Laboratory, Beihang University in Beijing and Fudan University in Shanghai, provide a successful example of modern era quantum material research.  Continue reading

Breakthrough in Understanding Quantum Metals


Metals, especially interacting metallic states, never stop surprising people. Among the interesting phenomena that have emerged is the “high-temperature” superconductivity. This holds great promise for enabling highly-efficient energy transportation, but it can be achieved only at extremely cold temperatures (about -100 degrees Celsius or below) that are currently too costly and energy-intensive to replicate. Continue reading

金属的油腻表叔:一个没有电子费米面的新金属态 | 众妙之门

幸福的家庭都是相似的,不幸的家庭各有各的不幸。作家通过文学作品刻画人类社会的光怪陆离,科学家通过研究探索物质世界的丰富现象。这不,很多年前学界中传言金属家族中其实还有一位人们从未谋面的邋遢表叔—— “正交金属”。    Continue reading

被解救的诺特

看过好莱坞鬼才昆汀·塔伦蒂诺的电影《被解救的姜戈》的朋友,可能都思考过这样一个问题,除了表面上暴力美学和废奴主题之外,这部电影到底想要表达什么意思?鬼才当然不愧是鬼才,离奇的故事——狂野的西部片人设与弥漫着潮湿和神秘气息的南方奴隶庄园背景,姜戈在这个昆汀匠心设计的故事里,挣脱了时代强加在他身上的枷锁,经过生死的洗礼,邪恶的奴隶主坎迪(莱昂纳多·迪卡普里奥)死了,好心仗义的德国赏金猎人舒尔茨(克里斯托弗·瓦尔兹)也死了,姜戈在杀光所有坏人后最终救出了妻子,体会到了追求自由的滋味。Continue reading