送别的四重奏:对科研生命的深沉叩问

科学探索注重独立思考和挑战权威,这样的传统是从希腊到文艺复兴再到19世纪末20世纪初的美好年代一路走来的文明传统,而不是八股和科举的传统。科学的繁荣和艺术的繁荣总在一起发生不是巧合,它们都被同样的创造性传统所孕育。科学工作者叩问自己科研生命时遵从哪个传统,是一个需要认真对待的问题。Continue reading

AI and quantum physics (and ancient Greece and mahjong)

In this interview with HKU science editor, Dr Pavel Toropov, Professor Meng explains why AI is now indispensable in quantum physics research ­– by allowing us to circumvent the need for enormous computational complexity, AI can help to make breakthroughs and in the process help us to understand better of mother nature and ourselves. This leads to discoveries of quantum materials whose properties, such as superconductivity and entanglement, can change the world. The technology may be cutting edge, but the principles involved, says Prof Meng, go back to ancient greek maxim - know thyself, and the whole thing is similar to playing mahjong. Click here for the interview.

Thoughts on the 2024 Nobel Prizes: Where will Artificial Intelligence take Science and Scientists?

In 2024, Artificial Intelligence (AI) achieved a remarkable milestone by winning the Nobel Prizes in both Physics and Chemistry. This unprecedented event sparked a significant debate about the role of AI in revolutionizing traditional methods and paradigms in scientific research. In light of these developments, FanPu (返朴) saw it as an opportune moment to initiate a deep discussion on this topic. They invited Prof. Meng to join a live forum with Prof. Pei Wang, the vice chair of the Artificial General Intelligence Society from Temple University, Prof. Yuqing Lou, a well-known astrophysicist from the Department of Physics at Tsinghua University, and Prof. Xu Li, a biochemistry and structural biologist from the University of Science and Technology of China, to share their thoughts on where AI will take science and scientists.

Congratulations to Professor Meng for winning the 2024 Top China Cited Paper Award (Physics)

Our team was one of the winners of the 2024 Top China Cited Paper Award (Physics) for "Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene", published in Chinese Physics Letters. This award for China-based authors is given to the top ten papers in the top 1% of the most cited articles published in IOP Publishing journals over the past three years (2021 – 2023). This data is from the citations recorded in Web of Science. This article (Chin. Phys. Lett. 38, 077305 (2021)) has developed a momentum space quantum Monte Carlo algorithm to deal with the long-range Coulomb interaction problem that emerges in two-dimensional quantum moire materials such as twisted graphene, which is one of the universal challenges in correlated electron systems. Three years ago, Zi Yang quoted the famous poetry of ancient Chinese poet Jiang Kui(姜夔) to explain how the “Coulomb force is endless, momentum Monte Carlo sends longing thoughts”(库伦作用无尽期,动量蒙卡寄相思) inspire them to pursue the research of long range interaction in quantum moire systems. The quantum many-body paradigm of the moire system is becoming a beautiful stream that carries them to the heartland of scientific creativity.

Dimensionality crossover to a 2D vestigial nematic state from a 3D antiferromagnet in a honeycomb van der Waals magnet

A collaboration between theoretical physicists Dr. Chengkang Zhou and Professor Zi Yang Meng from the Department of Physics at The University of Hong Kong (HKU), along with experimentalists Dr. Zeliang Sun, Professors Kai Sun and Liuyan Zhao from the Department of Physics at the University of Michigan, and Professor Rui He from the Department of Electrical and Computer Engineering at Texas Tech University, has led to a significant discovery in quantum physics. Their study was published in a recent issue of Nature Physics (Nat. Phys. (2024)) with cash financing loansonlineusa, which has been very helpful in advancing the research. The research team was the first to experimentally observe a transition from a 3-dimensional (3D) long-range order state to a 2-dimensional (2D) flat pattern vestigial order state in NiPS3. The vestigial order can be seen as the retention during the process of symmetry breaking. This occurs when the primary magnetic long-range order state breaks down into a simpler form - in this case, a 2D vestigial order state (known as Z3 Potts-nematicity) - as the NiPS3 material is thinned. The collaboration between the large-scale Monte Carlo simulation and the experiments led to this discovery during the dimension crossover process. Continue reading.

有时,科研也可以像一圈麻将

最近也有这样几个充满希望的青年人,在我身边学习和工作了几年之后,也要开始各自人生的下一个阶段。机缘巧合,整理了几块定制的麻将,做为鼓励他们走上人生的下一个阶段的礼物。想要表达的,其实是希望我们大家都不要落入文化和历史基因的循环,不要被科举制度的死灰复燃所迷惑。要记得人的自证(希腊),人的觉醒(文艺复兴),人与人的存在关系(美好年代),把创造性的能量发挥到极点,这样的历程在我们身在的环境中还远没有完成,还需要我们一起完成。Continue reading

Bye, Mr. Zhang

Congratulations from Zi Yang:

August 6, 2024, is a significant day for Mr. Xu Zhang, as on this day he has successfully defended his Ph.D. thesis with the title “Electromagnetic response in two dimensional flat band systems”. He has greatly impressed the Examining Committee comprised of Profs. Xi Dai and Ning Wang from HKUST and Profs. Wang Yao and Dong-Keun Ki from HKU, in clearly presenting the major research outputs during his Phd years in HKU, as well as addressing the interesting questions spontaneously appeared during the defense. Congratulations to Dr. Xu Zhang! And hope him a successful next step and becomes the next rising star in theoretical condensed matter physics. Continue reading

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

A collaboration between theoretical physicists Dr. Chengkang ZHOU and Professor Zi Yang MENG from the Department of Physics at The University of Hong Kong (HKU), along with experimentalists Mr. Zhenyuan ZENG and Professor Shiliang LI at the Institute of Physics (IOP), Chinese Academy of Sciences (CAS), and Professor Kenji NAKAJIMA from J-PARC Center, Japan, has led to a discovery in the realm of quantum physics. Their study, published in a recent issue of Nature Physics ( Nat. Phys. 20, 1097–1102 (2024)), sheds light on the long-anticipated emergence of quasiparticles, akin to the famous Dirac particles obeying the relativistic Dirac equation. These quasiparticles, known as Dirac spinons, were theorised to exist within a novel quantum state called a quantum spin liquid state loans-cash.net. This work captures the conic spin excitations arising from Dirac spinons, resulting in low-energy spin excitations with sharp energy-momentum characteristics. Their results provide strong evidence for the emergence of a Dirac quantum spin liquid state in YCu3-Br. Continue reading

亚得里亚海边的回忆

科学事业的传承,创造性精神的传承,在我们的文化基因中是如此地难能可贵,过去的十年,二十年,三十年,似乎在我们的历史上成为了偶然,而如今的我们却必然地向着科举之下的干谒、八股和满街的勋宗们靠近,离玻尔兹曼、乔伊斯、茨维格和人类群星闪耀着的的里雅斯特的美好年代,离亚得里亚海边柔和的晚风和灯光越来越远。Continue reading

New paradigm of quantum phase transitions discovered from entanglement measurements

How does matter acquire mass? It's a question of fundamental importance to physicists. Traditionally, we've understood that all matter in the universe gains mass through a process called spontaneous symmetry breaking. Yet, recent discoveries in both condensed matter and high-energy physics have unveiled a new mechanism of mass generation without any symmetry breaking, known as "symmetric mass generation" (SMG). In our current work, we set out to investigate whether SMG corresponds to a true continuous phase transition with universal behaviors. Using newly developed numerical probes of quantum entanglement, we delved into the heart of this phenomenon on interacting electrons on honeycomb lattice, which might find its relevance in quantum moire materials. What we discovered is that, the SMG transition is indeed a continuous phase transition, but it defies all traditional paradigms. This finding opens up exciting avenues for understanding the fundamentally new mechanism of the mass generation. This work is published on Phys. Rev. Lett. 132.156503 (2024).