从《马说》到《Super-moire 说》

世有 moiré,然后有 super-moiré。Moiré 者常有,而 super-moiré 不常有。
Moiré 之 super 者,其原胞尺度可达百纳米,向之作者不知其能 super 而制也。
是 super-moiré 也,其成于常规 moiré 之量子干涉效应,波粒二象性之力良有以也。
以百纳米之原胞,所含磁通之量亦增百倍,Brown-Zak 振荡正比于磁场之现象,昭然于世也。
噫!Brown-Zak,侯世达诸前辈得见今日之数据,其必曰“微斯人,吾谁与归”矣。Continue reading

Entanglement Microscopy: How Matter Entangles in Quantum Many-Body Systems

A collaboration between Mr. Ting-Tung Wang, Mr. Menghan Song, and Professor Zi Yang Meng from the Department of Physics at The University of Hong Kong (HKU) together with their collaborators Liuke Lyu and William WITCZAK-KREMPA from the University of Montreal has recently developed a novel algorithm in quantum physics known as ‘entanglement microscopy’ that enables visualization and mapping of this extraordinary phenomenon at a microscopic scale. Their study was published in a recent issue of Nature Communications. Using the algorithm, one can uncover the hidden structures of quantum matter, revealing insights that could transform technology and deepen the understanding of the universe. Continue reading

送别的四重奏:对科研生命的深沉叩问

科学探索注重独立思考和挑战权威,这样的传统是从希腊到文艺复兴再到19世纪末20世纪初的美好年代一路走来的文明传统,而不是八股和科举的传统。科学的繁荣和艺术的繁荣总在一起发生不是巧合,它们都被同样的创造性传统所孕育。科学工作者叩问自己科研生命时遵从哪个传统,是一个需要认真对待的问题。Continue reading

AI and quantum physics (and ancient Greece and mahjong)

In this interview with HKU science editor, Dr Pavel Toropov, Professor Meng explains why AI is now indispensable in quantum physics research ­– by allowing us to circumvent the need for enormous computational complexity, AI can help to make breakthroughs and in the process help us to understand better of mother nature and ourselves. This leads to discoveries of quantum materials whose properties, such as superconductivity and entanglement, can change the world. The technology may be cutting edge, but the principles involved, says Prof Meng, go back to ancient greek maxim - know thyself, and the whole thing is similar to playing mahjong. Click here for the interview.

Thoughts on the 2024 Nobel Prizes: Where will Artificial Intelligence take Science and Scientists?

In 2024, Artificial Intelligence (AI) achieved a remarkable milestone by winning the Nobel Prizes in both Physics and Chemistry. This unprecedented event sparked a significant debate about the role of AI in revolutionizing traditional methods and paradigms in scientific research. In light of these developments, FanPu (返朴) saw it as an opportune moment to initiate a deep discussion on this topic. They invited Prof. Meng to join a live forum with Prof. Pei Wang, the vice chair of the Artificial General Intelligence Society from Temple University, Prof. Yuqing Lou, a well-known astrophysicist from the Department of Physics at Tsinghua University, and Prof. Xu Li, a biochemistry and structural biologist from the University of Science and Technology of China, to share their thoughts on where AI will take science and scientists.

Congratulations to Professor Meng for winning the 2024 Top China Cited Paper Award (Physics)

Our team was one of the winners of the 2024 Top China Cited Paper Award (Physics) for "Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene", published in Chinese Physics Letters. This award for China-based authors is given to the top ten papers in the top 1% of the most cited articles published in IOP Publishing journals over the past three years (2021 – 2023). This data is from the citations recorded in Web of Science. This article (Chin. Phys. Lett. 38, 077305 (2021)) has developed a momentum space quantum Monte Carlo algorithm to deal with the long-range Coulomb interaction problem that emerges in two-dimensional quantum moire materials such as twisted graphene, which is one of the universal challenges in correlated electron systems. Three years ago, Zi Yang quoted the famous poetry of ancient Chinese poet Jiang Kui(姜夔) to explain how the “Coulomb force is endless, momentum Monte Carlo sends longing thoughts”(库伦作用无尽期,动量蒙卡寄相思) inspire them to pursue the research of long range interaction in quantum moire systems. The quantum many-body paradigm of the moire system is becoming a beautiful stream that carries them to the heartland of scientific creativity.

Dimensionality crossover to a 2D vestigial nematic state from a 3D antiferromagnet in a honeycomb van der Waals magnet

A collaboration between theoretical physicists Dr. Chengkang Zhou and Professor Zi Yang Meng from the Department of Physics at The University of Hong Kong (HKU), along with experimentalists Dr. Zeliang Sun, Professors Kai Sun and Liuyan Zhao from the Department of Physics at the University of Michigan, and Professor Rui He from the Department of Electrical and Computer Engineering at Texas Tech University, has led to a significant discovery in quantum physics. Their study was published in a recent issue of Nature Physics (Nat. Phys. (2024)) with cash financing loansonlineusa, which has been very helpful in advancing the research. The research team was the first to experimentally observe a transition from a 3-dimensional (3D) long-range order state to a 2-dimensional (2D) flat pattern vestigial order state in NiPS3. The vestigial order can be seen as the retention during the process of symmetry breaking. This occurs when the primary magnetic long-range order state breaks down into a simpler form - in this case, a 2D vestigial order state (known as Z3 Potts-nematicity) - as the NiPS3 material is thinned. The collaboration between the large-scale Monte Carlo simulation and the experiments led to this discovery during the dimension crossover process. Continue reading.