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[general description of criticality]

PR ZIRFH 2 AT, = FKEIRSI 2T 40 o [Thermal fluctuations drive classical phase

transitions, while quantum fluctuations drive quantum phase transitions. ]

o E):] JE - J Ff'}f;‘% X 57\ R R TN 7] X AR JeR: ) 7]:5 o [Landau uses order parameters to distinguish

phases with different broken symmetries. |
H %318 Landau—Ginzburg—Wilson %5550 :
H(®) = f dV((V®)* + s> + u(®*)?)
Z=[D® e H(®)
e Wilson: % # 4L # ¥ 18 [Renormalization Group]
LTERX: PHRANMESEL T

[Universality class: only determined by symmetry and
dimension of the system]
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[deconfined quantum criticality]

I}E?{W‘JJ e 'fﬁ_ K o [ The earliest numerical discovery.]

0.20 |

S=1/2 XY Model with an additional four-spin ring exchange term K.
Increasing K leads to the emergence of a striped bond plaquette order.

2
P S0*<M,’>

it ik B AR XIS — A T A AL, Aa
13%]3 Wik R T o [Landau-Ginzburg-Wilson Paradigm expects a first

order phase transition here, but it is violated. ] 0.00

A. W. Sandvik, et al, Phys. Rev. Lett. 89, 247201 (2002).
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[deconfined quantum criticality]

ZHETHELAAHIAT L X 693 AR
PEegAn (lde: Neel 5VBS) Z 1A L £ &9
Jig)i\ 7]:5 o [A deconfined quantum phase transition is a

continuous quantum phase transition between two phases
that break unrelated symmetries (e.g., Neel AFM and VBS). ]
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Deconfined quantum criticality

Senthil, Vishwanath, Balents, Sachdey, Fisher, Science 2004

s

® Field theory describes continuous transition between two unrelated
ordered states: AFM-VBS

H=J] Z S; - S; + g [other symmetry preserving interactions]
(i)

order parameter
HEN
HEN

r g small: AFM, breaks O(3) symmetry AF VBS

» g large: valence-bond solid, breaks Z, symmetry

- Topological defects (Spinons) bind together in the
VBS state (confinement) and condensate in the Neel
state, deconfine at the critical point

- leading to a continuous phase transition in a New
universality Levin and Senthil, PRB 2004

- AFM and VBS order parameters are not fundamental degrees of freedom, but emerge from the spinon field

® Convincing in SU(N) field theory for large N, not clear for small N (esp. N=2).
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[deconfined quantum criticality]

J-04E A . [model]
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e Spin-1/2 J-Q model 1s a designer Hamiltonian for DQC physics
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Heisenberg exchange= singlet-projector
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Sandvik, 2007
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Cd

order parameter

VBS

Qf:r

® The Q terms are multi-spin interactions that favor the Valence bond solid state, while the Heisenberg J
term favors the AF Neel state.

® The model exhibits VBS-AFM transition, showing signatures of
the DQC, with the transition appearing continuous

- Scaling violation p(L)L # const. is explained by an
unconventional two-length scale scaling

-7, % 1E&dangerously irrelevant

Shao, Guo, Sandvik. Science 2016

? VBS
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[Entanglement entropy and condensed matter physics]

o IREATAME (LM ETF, Binder RMR=, XIEKE) £Neéel-VBS

P 2 3E VA /ﬁl’ﬁ‘—%r— o [Standard observables (structure factors, Binder cumulants, correlation
lengths) become difficult to interpret near the Neel-VBS transition. ]

» PIIRE AR BRI AR B MR T LA XA, ML T Lo

8 ﬁi X o [Entanglement Entropy (EE) is less sensitive to microscopic details and directly
captures quantum correlations across a spatial cut.]

EEFEFEMY, &AL FENEvon Neumann 2 &5, KAME R U

Rényi 2 72 17 o [In QMC simulations, the von Neumann EE is out of reach, we use the Renyi EEs. ]

S, =InTr(p3%), pg = Trze PH = g=BHa,
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[Entanglement entropy and condensed matter physics]

Physical state Entropy Example

Gapped (brok. disc. sym.) al?=! + In(deg) Gapped XXZ

d=1CFT $inlL s = 5 Heisenberg chain
d > 2 QCP al™" + yocp Wilson-Fisher O(N)
Ordered (brok. cont. sym.) ald-1 + < lInlL Superfluid, Néel order
Topological order ald-1 — Yiop 7 spin liquid

N. Laflorencie, Physics Reports 646, 1 (2016)

11
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[Entanglement entropy and criticality]

A4 I A 69 2T 38 AR AN A 4 i T
BANE R A, FHa>0 X5%4E4

7‘:]’ 9/{ o [All CFT predictions for the EE of a critical
system with corners is this equation, with a > 0, which
disagrees with the numerical results. ]

S(l) = Al — alnl + constant,

J. Zhao, et al, Phys. Rev. Lett. 128, 010601 (2022).
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(b) daml el Lol
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FIG. 3. S_(f’(L) with even-B boundary of entangling region for (a) the L x L square lattice Hj, —j, model at 3D O(3) QCP
and (b) the H;_g, model at DQCP with pinning field § = 0.05 . The fitting result for Hy, _ s, is S_(f’(L) = 0.168(1)L —
0.081(4) In(L) — 0.124(7). The fitting result for Hy_g, is ST’ (L) = 0.224(1)L + 0.49(1) In(L) — 0.58(2). Insets show the
S_(f) — aL versus In(L) such that the sign of the log-corrections manifest. It is clear that the DQC log-correction accquires a
opposite sign compared with the O(n) ones. This is in constrast with the positivity requirement of EE for unitary CFTs.
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[Entanglement bipartition and surface criticality]

AT I 69 275 3718 AR TN A 21 48 58 #h &
UANE X F, FHa>0, X5H[E%
7‘:]’ ® o [All CFT predictions for the EE of a critical

system with corners is this equation, with a > 0, which
disagrees with the numerical results. ]

S(l) = Al — alnl + constant,

Goldstone Mode Correction:

N . 0
Sp(L) = al® ! + Gln(iLd D) 4 vord

2

Z. Deng, et al, Phys. Rev. Lett. 133, 026502 (2024).
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%H’]J VA };)% PR AN A BRI S FRPE [Use tilted cut

to avoid destroying symmetry manually.]

J. Emidio, et al, Phys. Rev. Lett. 133, 100402 (2024).
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[Entanglement spectrum and entanglement Hamiltonian]
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2 = Tr[p?] = Tr[e ""4]. )

FIG. 2. ES of Heisenberg ladder. (a) Heisenberg spin
ladder. The red dashed line cut it into two entangled con-
stituents, A and A. (b) The low-lying ES with L = 100,
J =1.732, J =1and 8 = 100, B4 = 200. The white line

B is fitting to the data with the dispersion 4.58 sin(k). (c¢) The
low-lying ES with L = 100, J' = 1.732, J = —1 and £ = 100,
Ba = 800. The white line is fitting to the data with the
dispersion 7.96 sin”(k/2).

ZY, ZY Meng, Nature communications 14, 2360 (2023) 14




Surface Critical Behavior(SCB)

For classical models, by tuning surface couplings, the surfaces may
exist three possible phase transition: ordinary, special and
extraordinary phase transition.

A
T T

bulk disordered  surface disordered
. sur face
special ordered Surface

a o \, bo
T. Z
IR ,

ordinary extraordinary >

; ¢

bulk ordered surface lordered >

JSC J
’ Bulk
Binder. PRB 9, 2194 (1974) ;

Binder, Phase and Critical Phenomena, 1983.




Decorated square (DS) lattice

ARLT AP PVBC * Ordinary SCB at 3D O(3) critical point /.., with
' ' surface critical exponents

* Nonordinary/special SCB at 3D O(3) critical point J_,

J : : )y
. : with different surface critical exponents
[ 4 L 4 ® >
0 J cl 1 J c2 J+00
H=J3S;-S;+/ 58-S n = —0.449(5) n, =-0.2090(15)
(i) (i)’
A
T vl disordored  surface disondered Tec * The gapless surface states of the AKLT-like ( symmetry-
special surface protected topological, SPT) phase induce special transition.
ao \ . bo
T, @
™ - N
ordinary ' extraordinary

. Zhang, PRL 118, 87201 (2017).

bulk ordered surface ‘ordered

>

- . 16
e
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[Entanglement bipartition and surface criticality]

FA A RFEA R E X @l AT A 2 LK
2, RARRE®EFTATH, 25F
TR e, MNm# a2 Z i en =,
5: "‘,éﬁﬂj T 7N ﬁ/iﬁ‘/ﬁéﬁﬁj/ﬂdo [We

establish, for the first time, a connection between entanglement
and surface critical behavior, and find that different surface
critical behaviors lead to distinct entanglement spectra, thereby
affecting the measurement of entanglement entropy—a
phenomenon that goes beyond the predictions of conformal
field theory.]

Y. Zhu, Z. Liu, Zhe Wang, Y. C. Wang and ZY, Phys. Rev. Lett. 136, 046501 (2026) 17
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[Entanglement bipartition and surface criticality]

E

Standard

S
o

Tilted

EFRMFELT, — N EEFEAFINT o RAVIEN LT AL ERET —A

extraordinar \'; 7}:5 ';LE o [In tilted cut, an additional order is induced at the critical point. We conject that an extraordinary phase
transition occurs at the surface. ]
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[Entanglement bipartition and surface criticality]

A1) 4K, T Li-Haldane-Poilblanc 43 #8 %t

TIQEA R LA AR 2. A% H R ES
é Ll 2}_@1% éﬁ XT/.‘_"Z. 9% %\ o [We check the Li-Haldane-

Poilblanc conjecture for JQ model — the correspondence
between Surface Excitation Spectra (SES) and Entanglement

Spectra (ES).]

M BAVT O H A AT AR
FrJ , LA TR a9 E] F X & kAR
k Q/J 7(: I‘?'] o [Qualitatively, we can argue that the

conjecture holds for this model, and that the two ways of cut
show a big difference.]

SES

ES

iE #7Standard #n Tilted
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[Entanglement bipartition and surface criticality]

SCB class at 3D O(3) critical point [9HL6] ull 7L

Spe. 20.56(1) 20.259(3)

Ord. 1.36(6) 0.69(3)
SCB class at 3D O(2) critical point|14}, [17] ull y

Spe. -0.35(1)

Ord. 1.43(1) 0.69(2)
SCB class at 3D Ising critical point[L7} [1§] ull nL

Spe. -0.27(1)

Ord. 1.52(1) 0.82(8)
SCB class at DQCP (obtained in this work) ull 7L

Ord. 2.36(2) 1.305(10)

FAVLAE D) T R E| — 23709 i —AR A e R, SAVAARE RAET

"‘/]\ ordinar \'; 7]:51 2’2 o [We also find a new set of critical exponents for standard cut satisfying the scaling law,
which we argue is an ordinary phase transition. ]

2n. =ni+n 0 =0.26(3)

20
S
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|[Entanglement entropy and its derivative by QMC]
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Wang, Wang, Ding, Mao and ZY,
Nat Commun 16, 5880 (2025).

95(4, g)
dg

= a'(g)l + ga(m)flf”.

Wang, Deng, Liu, Wang, Ding, Zhang, Guo, ZY
Chinese Physics Letters 42, 110712 (2025)
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Universal and non-universal contributions of entanglement under different bipartitions

Zhe Wang,»? * Chunhao Guo,"? Bin-Bin Mao,"? and Zheng Yan' 21

! Department of Physics, School of Science and Research Center for
Industries of the Future, Westlake University, Hangzhou 310030, China
2 Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China

3School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao 266000, China

(Dated: January 21, 2026)

Entanglement entropy (EE) is a fundamental probe of quantum phases and critical phenomena,
which was thought to reflect only bulk universality for a long time. Very recently, people realized that
the microscopic geometry of the entanglement cut can induce distinct entanglement-edge modes,
whose coupling to bulk critical fluctuations may alter the scaling of the EE. However, this perception
is very qualitative and lacks quantitative consideration. Here, we investigate this problem through
high-precision quantum Monte Carlo simulations combined with the analysis of scaling theory to
build a quantitative understanding. By considering three distinct bipartitions corresponding to three
surface criticality types, we reveal a striking dependence of the constant term ~ on the microscopic
cut at the quantum critical point. Notably, cuts that generate extra gapless edge modes yield
a sign reversal in v compared to those producing gapped edges. We explain this behavior via a
modified scaling form that incorporates contributions from both bulk and surface critical modes.
Furthermore, we demonstrate that the derivative of EE robustly extracts the bulk critical point and
exponent v regardless of the cut geometry, providing a reliable diagnostic of bulk universality in
the presence of strong surface effects. Our work for the first time establishes a direct quantitative
connection between surface criticality and entanglement scaling, challenging the conventional view
that EE solely reflects bulk properties and offering a refined framework for interpreting entanglement

in systems with boundary-sensitive criticality.
arXiv:2601.12365

22


https://arxiv.org/abs/2601.12365

FIG. 1. Columnar and staggered dimerized spin-1/2 Heisen-
berg models on the square lattice, with couplings J and
Jp > J on alternating bonds. (a,d) Entanglement/physical
boundary cuts weak bonds (CD-W). (b,e) Cuts strong bonds
(CD-S). (e,f) Cuts staggered bonds in the staggered model
(SD). The system size is L x L; subsystem A is a (L/2) x L
cylinder, separated from environment B by dashed lines.
Physical boundaries (open circles) denote true open edges.
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FIG. 2. Second Rényi EE S‘® under three bipartition schemes
versus system size L, at the QCP J. (a) or in the gapped dimer
phase at J./2 (b). The fitting results are listed in Table L.

TABLE I. Fitting results for the data in Fig. 2(a) (J = J.)
and Fig. 2(b) (J = J./2), using the form S (L) = aL + ~.

Cuts  a(J=J) A(J=Jo) a(J=Je/2) ~(J=Je/2)

CD-W  0.183(1)  0.069(4)  0.033(1) 0.000(4)
CD-S  0.781(1) -0.764(9)  1.2498(2) 0.000(3)
SD 0.698(1)  -0.739(7)  0.6977(2) 0.001(2)
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S(L,g) =a(g) L+ So(z), == (g9— gc) L

S'D(I) = "}’|Q’ - gcle
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FIG. 5. (Color online) Area law prefactor a of the second
Rényi entropy S; as a function of the coupling ratio g for
strip and square shaped subregions. The dashed line is a fit
to a —alge) = reP—1 lg — gc|” with the correlation length
exponent v = 0.71.

Johannes Helmes and Stefan Wessel
Phys. Rev. B 89, 245120 (2014)

Ld—l Ld,—l
A1 +r i1

S=C
Max A. Metlitski, Carlos A. Fuertes, and Subir Sachdev
Phys. Rev. B 80, 115122 (2009)

Edge cases:

S(L,g) = a(g) L + Sy(x) — Ss(x),

el —1 d—1
S — ﬂ(g)id_l | ('TE] — ﬁJ"{S):Ié:r_\{——l*

9S(L,g)
dg

=a'(g)L + Sy(z) L',
24
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FIG. 3. The derivative of the second Rényi EE and the scaling function Sj(z) obtained from the data collapse analysis of the
DEE near the transition. (a,d) Data of the columnar model with entanglement boundary cuts weak bonds (CD-W). (b,e) Data
of the columnar model with entanglement boundary cuts strong bonds (CD-S). For columnar model Jp = 1.0 is fixed, while
J is tuned around the QCP J. = 0.52337(3). (c,f) Data of the staggered model with entanglement boundary cuts staggered
bonds (SD). For staggered model, Jp = 1.0 is fixed, while J is tuned around the QCP J. = 0.39692(1).
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