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liquid, consistent with the picture of liquid 3He as an
‘‘almost localized’’ system.

Heat capacity measurements [14] were the first to show
that the second layer solidified at a density of 6:4 nm!2. It
was proposed that this occurred by the formation of a
triangular lattice in
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commensuration with the
first layer [17], and such a structure has subsequently been
found in path integral Monte Carlo simulations [18].
Later measurements of the magnetization suggested that
a ‘‘highly correlated regime’’ existed in the fluid near
solidification, which began at 5:8 nm!2 [19,20].

In this Letter we report measurements of the heat
capacity and nuclear magnetization of a fluid 3He mono-
layer adsorbed on graphite plated with a bilayer of HD, in
which we concentrate on the region close to solidification
[21]. Since the density of each HD layer is 9:1 nm!2 the
!!!

7
p

"
!!!

7
p

solid now forms at 5:2 nm!2 [22]. This is a
quantum solid of remarkably low density, with interpar-
ticle spacing greater than in bulk liquid 3He at zero
pressure. At fluid coverages approaching this commensu-
rate density we observe a rapid increase in the quasipar-
ticle effective mass that we interpret as critical behavior
approaching a Mott-Hubbard transition. The magnetiza-
tion diverges in a similar way indicative of Fa

0 tending to
a constant. The measurements were performed using an
experimental cell that is described in more detail else-
where [22]. The procedures for preplating the graphite
surface with a bilayer of HD are those followed in pre-
vious work. The heat capacity data for coverages n #
5:0 nm!2 are shown in Fig. 1. At sufficiently low tem-
peratures the data are well described by c $ !% "T %
!2DT2. The T2 term is the leading order correction pre-
dicted in 2D, as discussed later. At each density the
effective mass ratio is inferred from fits to the data of
this form, Fig. 2 [23]. It increases from close to unity at

the lowest density to around 13 at n3 $ 5:0 nm!2, sig-
nificantly larger than the effective mass in bulk liquid at
the melting pressure.

In earlier continuous wave NMR experiments per-
formed in the same cell, we determined the magnetiza-
tion enhancement relative to an ideal Fermi gas M=M0.
Assuming the validity of the almost localized fermion
model (essentially that Fa

0 ! !3=4&, we can infer values
of m'=m from the magnetization data [24]. These are also
plotted in Fig. 2, and are clearly in agreement with the
direct determination from the heat capacity data [25].
Within the lattice gas picture, our experimental system
is actually more closely modeled by the filling controlled
metal-insulator transition. Note that in the adsorbed film
the 3He is exposed to the crystalline potential of the HD
substrate, but ‘‘half-filling’’ is never achieved because of
the short-range repulsion between 3He atoms. Rather, it is
natural to take the density of the lattice as nc, that of the
commensurate solid. Then the ‘‘doping’’ # $ (1! n=nc&:
It is then expected that m'=m) 1=# [9]. We fit the appar-
ent divergence of the effective mass, over the whole
density range, to the empirical form m'=m $
(1! n=nc&!$, and we find for the critical density nc $
5:1 nm!2, close to the value of 5:2 nm!2 for the
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solid. The precision does not allow a reliable determina-
tion of the critical exponent. The solid is stabilized at the
commensurate density by the combined effects of the
periodic potential due to the HD substrate, the short-
range hard core repulsive energy between 3He atoms,
and their zero point energy. Thus correlation effects are
crucial to its existence, and precursor behavior in the 2D
fluid suggestive of the approach towards a critical point
lead us to identify this transition as Mott-Hubbard local-
ization. However, it appears that solidification may be

FIG. 1. Heat capacity at 3He coverages: 1.00 (!), 2.00 (*),
3.00 ("), 4.00 (#), 4.40 ($), 4.70 (4), 4.80 (%) , 4.90 (&),
4.95 ('), and 5:00 nm!2 (5).

FIG. 2. Effective mass ratio as a function of 3He fluid density
inferred from heat capacity (!), magnetization (4), showing
apparent divergence. Solid line is fit to data (see text).
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Mott transition triggered by diverging mass: 

fermions become slow. 
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Evidence for a Mott-Hubbard Transition in a Two-Dimensional 3He Fluid Monolayer

A. Casey, H. Patel, J. Nyéki, B. P. Cowan, and J. Saunders
Millikelvin Laboratory, Department of Physics, Royal Holloway University of London, Egham,

Surrey, TW20 0EX, United Kingdom
(Received 15 November 2002; published 21 March 2003)

The heat capacity and magnetization of a fluid 3He monolayer adsorbed on graphite plated with a
bilayer of HD have been measured in the temperature range 1–60 mK. Approaching the density at
which the monolayer solidifies into a
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commensurate solid, we observe an apparent divergence
of the effective mass and magnetization corresponding to a T " 0 Mott-Hubbard transition between a
2D Fermi liquid and a magnetically disordered solid. The observations are consistent with the
Brinkman-Rice-Anderson-Vollhardt scenario for a metal-insulator transition. We observe a leading
order T2 correction to the linear term in heat capacity.

DOI: 10.1103/PhysRevLett.90.115301 PACS numbers: 67.70.+n, 67.55.–s, 71.10.Ay, 71.30.+h

The study of bulk liquid 3He has played a central role
in the development of theories of interacting Fermi sys-
tems [1]. The interatomic potential consists of a strong
hard core repulsion and a weakly attractive tail. At low
mK temperatures these interactions can be tuned by vary-
ing the pressure from zero to the melting pressure
(34.4 bars), reducing the molar volume by approximately
30%. At sufficiently low temperatures liquid 3He is de-
scribed by Landau Fermi-liquid theory. Over this pres-
sure range the effective mass ratio m#=m increases from
2.80 to 5.85. The Landau parameters which are introduced
phenomenologically to characterize the quasiparticle
interactions have markedly different pressure depen-
dences. Fs

0 which renormalizes the compressibility
increases from 9.3 to 88, but Fa

0 which determines a
ferromagnetic spin-spin interaction merely varies from
$0:7 to $0:75.

There is continuing interest in developing microscopic
models to describe this behavior and strongly correlated
Fermi systems in general. Appealing model systems are
provided by two-dimensional fluid monolayers of 3He
adsorbed on atomically flat substrates. The absence of a
liquid-gas transition in 2D 3He allows the interatomic
spacing in the fluid to be varied over a wide range.
Thereby correlations can be tuned from weak to strong,
simply by varying the surface density of 3He atoms n "
N=A. In this Letter we discuss a simple 3He monolayer,
subjected to a crystalline substrate potential, where it is
found that the 3He solidifies at the appropriate density
into a structure commensurate with this potential. The
focus here is the strong correlations in a 2D fluid which
develop as its density approaches that of this commensu-
rate solid.We argue that this provides a novel example of a
metal-insulator transition in 2D, in which we can track
the associated collapse of the Fermi-liquid ground state
through measurements to well below the degeneracy
temperature. Metal-insulator (MI) transitions continue
to be the subject of widespread interest [2–4], as well
as some controversy [5]. The present system seems to
provide an example of a MI transition occurring via the

Brinkman-Rice-Anderson-Vollhardt scenario [6]. In the
simplest model, one considers half-filling: one particle
per site, and magnetic interactions are neglected. The MI
transition can be regarded as a quantum phase transition
arising from competition between tunneling motion,
tending to reduce zero point kinetic energy, and on-site
repulsion U. This model was applied by Anderson and
Brinkman [7] to bulk liquid 3He, and developed into the
‘‘almost localized fermion’’ model [8]. This involves
introducing a fictitious lattice; the model has also been
generalized away from half-filling [9]. The key results, at
half-filling, are that a MI transition occurs as U ! Uc,
while m#=m ! 1, Fa

0 ! $3=4. The large increase in
compressibility with pressure is also explained [8,10].
Recently results on the polarization dependence of the
specific heat in bulk liquid 3He have been discussed in the
context of such models [11].

The advantages of our experimental system are that it
is truly two dimensional, with no interlayer coupling, and
it has simple short-range interactions and negligible
spin-orbit coupling. A particularly interesting feature
is that the solid is highly magnetically frustrated and it
is believed to have a quantum spin-liquid ground state
[12]. The second layer of 3He adsorbed on bare graphite
has been extensively investigated. The first layer forms a
compressed 2D paramagnetic solid of density 11:2 nm$2,
as determined by neutron scattering [13]. The first heat
capacity measurements of the second layer fluid were well
described by the form c " !% "T [14], where " "
#k2BAm

#=3 !h2. The ! term is attributed to residual sub-
strate heterogeneity [14,15], and A is the area of the
substrate. The effective mass ratio m#=m of the second
layer fluid was found to vary from unity at the lowest
densities to 4.5 at 4:4 nm$2. Measurements of the mag-
netization found enhancements relative to that of an ideal
Fermi gas up to 25 at a density of 5:4 nm$2 [16]. Since
M=M0 " m#=m&1% Fa

0 ', these measurements together
allow a determination of Fa

0 . Although the effective
mass increases with density, Fa

0 appeared to saturate
with Fa

0 ’ $3=4, close to the value observed in bulk
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Bilayer 3He: A Simple
Two-Dimensional Heavy-Fermion
System with Quantum Criticality
Michael Neumann, Ján Nyéki, Brian Cowan, John Saunders*

Two-dimensional helium-3 (3He) provides a simple model for the experimental investigation of the
emergence of quantum complexity in a strongly correlated Fermi system. We have observed two-
dimensional, two-band heavy-fermion behavior in bilayer films of 3He atoms when adsorbed on the
surface of graphite preplated by a solid bilayer of 4He. Thermodynamic measurements on this
system showed that the relevant control parameter is the total density of the 3He film. The 3He
bilayer system can be driven toward a quantum critical point at which the effective mass appears to
diverge, interband coupling vanishes, and a local-moment state appears. It opens a new testing
ground for theories of quantum criticality in heavy-fermion materials.

Quantum critical points (QCPs) occur
when a material can be smoothly tuned
with the application of an external control
parameter between competing ground

states at the absolute zero of temperature (1, 2).
Their importance arises because the quantum
fluctuations seen at low temperatures can exert
a profound influence on material properties at
higher temperatures (3). The heavy-fermion
f-electron alloys provide important examples of
such quantum criticality (4). In these systems, a
lattice of f-electron moments couple to the
conduction electrons via the Kondo interaction;
at low temperatures, this results in a large Fermi
surface incorporating the f-electrons. The large
effective mass of the quasi-particles arises from
the release of the spin entropy of the localized
moments. In such Kondo-lattice materials, exter-
nal control parameters such as pressure or mag-
netic field can be used to tune to magnetic QCPs.
However, the theoretical understanding of quan-
tum criticality in these systems is a matter of
controversy (5, 6). In different scenarios, the
transition from the heavy-fermion state to anti-
ferromagnetic order can involve the breakdown
of the Kondo effect and a sudden transformation
of the Fermi surface at the QCP, or the formation
of a spin density wave. The mechanism by which
the breakup of quasi-particles near the QCP
occurs, the nature of the quantum fluctuations
(local or itinerant), and the relative importance of
spin and charge degrees of freedom are all areas
of active investigation.

The 3He atom has nuclear spin S = ½; the
interatomic potential consists of a strong hard-
core repulsion and a weakly attractive tail.
Bulk liquid 3He is the paradigm for strongly
correlated fermions, and it played an impor-

tant role in establishing Landau Fermi-liquid
theory as the standard theoretical model for
these systems (7, 8). We report evidence for
the emergence of heavy-fermion quantum
criticality in a fluid bilayer of 3He, a system
that is simpler than the intermetallic com-
pounds that have previously been the central
focus of attention.

Background: 3He films on graphite. Two-
dimensional (2D) 3He has been extensively
studied through measurements on atomically
layered helium films grown on the surface of
graphite (9). Particular attention has been given
to the second layer of 3He, which is grown on
top of a dense solid first 3He layer that forms a
triangular latticewith a density of 11.2 atoms/nm2.
At sufficiently low coverage, the second layer of
3He forms a 2D fluid, and at low temperatures,
both its heat capacity (10) and magnetization
(11, 12) display the expected features of a Landau
Fermi liquid. At higher coverage, the second 3He
layer solidifies. Stabilized by the weak periodic
potential arising from the solid first layer, the
second-layer 2D solid forms a
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tri-
angular superlattice (10) at a ratio of 4/7 between
second- and first-layer densities, corresponding
to a second-layer density of 6.4 nm–2. The same
superlattice structure is observed if the first 3He
layer is replaced by a monolayer of 4He (13)
or by a bilayer of hydrogen deuteride (14). In the
latter case, the density of the
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gular superlattice is 5.2 nm–2. Upon approach-
ing the density of this superlattice by increasing
the 3He coverage of the second-layer fluid film,
an apparent divergence of the effective quasi-
particle mass has been observed; this was
interpreted as a density-driven Mott-Hubbard
transition upon approaching half-filling of the
superlattice (15).

It is established that the second-layer solid
(Mott insulator) phase is a frustrated 2Dmagnetic
system of S = ½ local moments on a triangular
lattice. Frustration arises both from the lattice

geometry and from competing intralayer atomic
ring exchange interactions (16, 17). This ex-
change gives rise to a low-temperature heat
capacity maximum due to short-range magnetic
order at T ~ Jc, where Jc is an effective exchange
constant. As expected theoretically, no magnetic
ordering transition is observed at finite temper-
ature in this 2D system. Upon increasing the 3He
coverage further, a fluid overlayer forms and the
second-layer solid is compressed somewhat. The
competing exchange interactions are a function
of the total coverage and may be determined
experimentally (18, 19). In this way, themagnetic
ground state may be tuned with coverage from
quantum spin liquid to ferromagnetic (20)
through intermediate states that are not fully
understood.

In the present experiment, we preplate the
graphite surface with two atomic layers of solid
4He (21) (Fig. 1, inset). The properties of a 3He
film grown on this surface are studied through
measurements of heat capacity and magnetiza-
tion as a function of coverage, over the tem-
perature range 1 to 100 mK (22). The key feature
of the 3He bilayer adsorbed on this composite
substrate is that we create a delicately balanced
system of two strongly coupled fluid layers of
3He, the first of which is on the verge of
localization.

Overview: 3He bilayer. Figure 1 is a sim-
plified phase diagram of a 3He film grown on the
graphite/4He/4He substrate. The first layer of
3He (L1) initially forms a monolayer fluid. With
increasing coverage, a second layer (L2) forms
that is also fluid. The resultant 3He fluid bilayer
comprises an almost localized layer (L1) and an
overlayer of itinerant fermions (L2); these layers
are coupled together by particle exchange. Below
a characteristic temperature T0, this fluid bilayer
has Fermi-liquid properties, with an enhanced
quasi-particle mass. The effective mass of the
heavy-fermion state at T << T0 increases with
coverage, with an apparent divergence at a
critical coverage nc, at which T0 collapses.
Beyond this coverage, L1 is fully localized at
all temperatures investigated, and the two layers
decouple. The system then comprises a solid 3He
layer (L1) forming a S =½magnet on a triangular
lattice, and a fluid overlayer (L2) with relatively
weak correlations and moderate quasi-particle
effective mass.

Monolayer film. At coverage n < 6.3 nm–2,
the film consists of a single atomic layer of
3He. The heat capacity (fig. S5) is of the form
c(T) = b + gT + GT 2, where the leading order
correction to Fermi liquid theory G < 0, as found
previously for fluid monolayers on a different
substrate (15). We may infer the effective mass
from the linear term in the heat capacity, g (23).
Over the coverage range 4.0 to 6.0 nm–2, the
effective mass ratio m*/m shows a modest
increase from 2.8 to 3.9. The term b is a small
apparent offset in the heat capacity observed
at the lowest temperatures, similar to that found
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fluctuations seen at low temperatures can exert
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such quantum criticality (4). In these systems, a
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tum criticality in these systems is a matter of
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of the Fermi surface at the QCP, or the formation
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interatomic potential consists of a strong hard-
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Bulk liquid 3He is the paradigm for strongly
correlated fermions, and it played an impor-

tant role in establishing Landau Fermi-liquid
theory as the standard theoretical model for
these systems (7, 8). We report evidence for
the emergence of heavy-fermion quantum
criticality in a fluid bilayer of 3He, a system
that is simpler than the intermetallic com-
pounds that have previously been the central
focus of attention.

Background: 3He films on graphite. Two-
dimensional (2D) 3He has been extensively
studied through measurements on atomically
layered helium films grown on the surface of
graphite (9). Particular attention has been given
to the second layer of 3He, which is grown on
top of a dense solid first 3He layer that forms a
triangular latticewith a density of 11.2 atoms/nm2.
At sufficiently low coverage, the second layer of
3He forms a 2D fluid, and at low temperatures,
both its heat capacity (10) and magnetization
(11, 12) display the expected features of a Landau
Fermi liquid. At higher coverage, the second 3He
layer solidifies. Stabilized by the weak periodic
potential arising from the solid first layer, the
second-layer 2D solid forms a
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an apparent divergence of the effective quasi-
particle mass has been observed; this was
interpreted as a density-driven Mott-Hubbard
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(Mott insulator) phase is a frustrated 2Dmagnetic
system of S = ½ local moments on a triangular
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capacity maximum due to short-range magnetic
order at T ~ Jc, where Jc is an effective exchange
constant. As expected theoretically, no magnetic
ordering transition is observed at finite temper-
ature in this 2D system. Upon increasing the 3He
coverage further, a fluid overlayer forms and the
second-layer solid is compressed somewhat. The
competing exchange interactions are a function
of the total coverage and may be determined
experimentally (18, 19). In this way, themagnetic
ground state may be tuned with coverage from
quantum spin liquid to ferromagnetic (20)
through intermediate states that are not fully
understood.

In the present experiment, we preplate the
graphite surface with two atomic layers of solid
4He (21) (Fig. 1, inset). The properties of a 3He
film grown on this surface are studied through
measurements of heat capacity and magnetiza-
tion as a function of coverage, over the tem-
perature range 1 to 100 mK (22). The key feature
of the 3He bilayer adsorbed on this composite
substrate is that we create a delicately balanced
system of two strongly coupled fluid layers of
3He, the first of which is on the verge of
localization.
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are coupled together by particle exchange. Below
a characteristic temperature T0, this fluid bilayer
has Fermi-liquid properties, with an enhanced
quasi-particle mass. The effective mass of the
heavy-fermion state at T << T0 increases with
coverage, with an apparent divergence at a
critical coverage nc, at which T0 collapses.
Beyond this coverage, L1 is fully localized at
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decouple. The system then comprises a solid 3He
layer (L1) forming a S =½magnet on a triangular
lattice, and a fluid overlayer (L2) with relatively
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effective mass.

Monolayer film. At coverage n < 6.3 nm–2,
the film consists of a single atomic layer of
3He. The heat capacity (fig. S5) is of the form
c(T) = b + gT + GT 2, where the leading order
correction to Fermi liquid theory G < 0, as found
previously for fluid monolayers on a different
substrate (15). We may infer the effective mass
from the linear term in the heat capacity, g (23).
Over the coverage range 4.0 to 6.0 nm–2, the
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increase from 2.8 to 3.9. The term b is a small
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ventionally attributed to a small proportion of
3He atoms localized by weak substrate hetero-
geneity (fig. S4).

3He bilayer: Heavy-fermion phase. Heat
capacity isotherms show that promotion to a
second 3He layer (L2) occurs at a total coverage
n = 6.3 ± 0.2 nm–2 (PL2 in Fig. 1). As the fluid

bilayer forms, the most striking feature that
develops is a maximum in the heat capacity
(Fig. 2A, inset). The temperature of this maxi-
mum, T0, depends strongly on the density of
layer L2; T0 decreases with increasing 3He
coverage. Between 7.5 and 9.0 nm–2, T0 de-
creases from 58 to 12 mK (24). The appearance
of this qualitatively new effect in 3He films is

strongly indicative of interlayer coupling be-
tween L1 and L2.

In Fig. 2A, we plot the heat capacity c(T) and
g(T) = [c(T) – b]/T as a function of temperature.
Only well below T0 does g(T) tend to an ap-
proximately constant value, as expected for a
Fermi liquid. In this regime, we infer an effec-
tive mass ratio m*/m from a determination of
g(T→ 0). Describing the heat capacity at T < T0
requires the inclusion of a thermally activated
term in the heat capacity such that c(T) = b +
g1T + g2 exp(–D/T), introducing a “pseudogap”
D. Alternative fit functions (fig. S6) yield
consistent values of the parameter g1. The
effective mass inferred from g1 shows a pro-
nounced increase with increasing coverage. The
largest value observed directly is m*/m = 18.9 at
a coverage of 9.0 nm–2. These observations show
that a heavy-fermion state of the bilayer develops
below the characteristic temperature T0 (region A
of phase diagram, Fig. 1).

The heavy-fermion picture is supported by
measurements of the nuclear magnetization.
Figure 2B shows the total sample magnetization
M as measured by field-swept continuous-wave
nuclear magnetic resonance (NMR) in a static field
of B = 28 mT (25). For coverages below 9.0 nm–2,
M is proportional to the uniform magnetic sus-
ceptibility of the fermionic system. It exhibits a

Fig. 1. Proposed phase dia-
gram of 3He film adsorbed on
graphite plated by a bilayer of
4He. PL2 indicates formation of
the 3He bilayer. Region A: T <
T0. L1 and L2 form a two-band
heavy-fermion system. Region
B: T > T0. The two layers pro-
gressively decouple into a
strongly correlated, nearly local-
ized narrow-band Fermi system
(L1) and a weakly correlated 2D
Fermi fluid (L2). Region C: nI <
n < nc, intervening phase. Re-
gion D: The two layers decouple
into a 2D local-moment magnet
(Mott insulator, L1) with frus-
trated intralayer spin exchange and no magnetic phase transition at finite temperature, TM = 0, and a
weakly correlated 2D Fermi fluid overlayer (L2). PL3 indicates the formation of a third

3He layer. Inset
is a schematic of the bilayer 3He system (see text for details).
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Fig. 2. Heat capacity and magnetization data for a series of coverages
(nm–2) corresponding to a bilayer fluid film, L1 + L2. (A) Heat capacity
divided by temperature, g(T), after subtraction of a small offset, b = 0.25 ±
0.03 mJ/K, attributable to weak substrate heterogeneity. Inset shows heat
capacity data from which these results are obtained, and includes two
coverages close to layer promotion at 6.3 ± 0.2 nm–2, where L2 starts to
form. The distinctive heat capacity maximum at T0 is driven toward T = 0
with increasing coverage. Fits to heat capacity data are shown in the inset:
fits to low-temperature data for T < T0 (LT, dashed line); fits to data at all
temperatures (extended, solid line). For details, see text and supporting
online material. (B) Total sample magnetization inferred from continuous-

wave NMR at selected coverages. Data at 8.00, 8.50, and 9.00 nm–2 show a
clear maximum near T0. The Curie-law magnetization of local moments
with a density of 6.30 nm–2 and the magnetization of an ideal Fermi gas
are shown for comparison. Below T0, a coherent heavy-fermion liquid
forms with weakly temperature-dependent (Pauli) susceptibility. The
upturn at the lowest temperatures, which is coverage dependent, may
arise from spins localized by substrate heterogeneity. The magnetization
isotherm at 1.0 mK [inset of (B)] shows a rapid growth in 3He nuclear
magnetization, starting at a coverage of 9.2 nm–2. For reference, the main
figure shows the temperature dependence of the magnetization at cov-
erages of 9.25 and 9.85 nm–2.
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The first layer is close 
to the Mott transition 
(slow) fermions. The second 
layer is far from half filling 
(fast)  

liquid, consistent with the picture of liquid 3He as an
‘‘almost localized’’ system.

Heat capacity measurements [14] were the first to show
that the second layer solidified at a density of 6:4 nm!2. It
was proposed that this occurred by the formation of a
triangular lattice in
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commensuration with the
first layer [17], and such a structure has subsequently been
found in path integral Monte Carlo simulations [18].
Later measurements of the magnetization suggested that
a ‘‘highly correlated regime’’ existed in the fluid near
solidification, which began at 5:8 nm!2 [19,20].

In this Letter we report measurements of the heat
capacity and nuclear magnetization of a fluid 3He mono-
layer adsorbed on graphite plated with a bilayer of HD, in
which we concentrate on the region close to solidification
[21]. Since the density of each HD layer is 9:1 nm!2 the
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7
p

"
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7
p

solid now forms at 5:2 nm!2 [22]. This is a
quantum solid of remarkably low density, with interpar-
ticle spacing greater than in bulk liquid 3He at zero
pressure. At fluid coverages approaching this commensu-
rate density we observe a rapid increase in the quasipar-
ticle effective mass that we interpret as critical behavior
approaching a Mott-Hubbard transition. The magnetiza-
tion diverges in a similar way indicative of Fa

0 tending to
a constant. The measurements were performed using an
experimental cell that is described in more detail else-
where [22]. The procedures for preplating the graphite
surface with a bilayer of HD are those followed in pre-
vious work. The heat capacity data for coverages n #
5:0 nm!2 are shown in Fig. 1. At sufficiently low tem-
peratures the data are well described by c $ !% "T %
!2DT2. The T2 term is the leading order correction pre-
dicted in 2D, as discussed later. At each density the
effective mass ratio is inferred from fits to the data of
this form, Fig. 2 [23]. It increases from close to unity at

the lowest density to around 13 at n3 $ 5:0 nm!2, sig-
nificantly larger than the effective mass in bulk liquid at
the melting pressure.

In earlier continuous wave NMR experiments per-
formed in the same cell, we determined the magnetiza-
tion enhancement relative to an ideal Fermi gas M=M0.
Assuming the validity of the almost localized fermion
model (essentially that Fa

0 ! !3=4&, we can infer values
of m'=m from the magnetization data [24]. These are also
plotted in Fig. 2, and are clearly in agreement with the
direct determination from the heat capacity data [25].
Within the lattice gas picture, our experimental system
is actually more closely modeled by the filling controlled
metal-insulator transition. Note that in the adsorbed film
the 3He is exposed to the crystalline potential of the HD
substrate, but ‘‘half-filling’’ is never achieved because of
the short-range repulsion between 3He atoms. Rather, it is
natural to take the density of the lattice as nc, that of the
commensurate solid. Then the ‘‘doping’’ # $ (1! n=nc&:
It is then expected that m'=m) 1=# [9]. We fit the appar-
ent divergence of the effective mass, over the whole
density range, to the empirical form m'=m $
(1! n=nc&!$, and we find for the critical density nc $
5:1 nm!2, close to the value of 5:2 nm!2 for the
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solid. The precision does not allow a reliable determina-
tion of the critical exponent. The solid is stabilized at the
commensurate density by the combined effects of the
periodic potential due to the HD substrate, the short-
range hard core repulsive energy between 3He atoms,
and their zero point energy. Thus correlation effects are
crucial to its existence, and precursor behavior in the 2D
fluid suggestive of the approach towards a critical point
lead us to identify this transition as Mott-Hubbard local-
ization. However, it appears that solidification may be

FIG. 1. Heat capacity at 3He coverages: 1.00 (!), 2.00 (*),
3.00 ("), 4.00 (#), 4.40 ($), 4.70 (4), 4.80 (%) , 4.90 (&),
4.95 ('), and 5:00 nm!2 (5).

FIG. 2. Effective mass ratio as a function of 3He fluid density
inferred from heat capacity (!), magnetization (4), showing
apparent divergence. Solid line is fit to data (see text).
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Mott transition triggered by diverging mass: 

fermions become slow. 

Evidence for a Mott-Hubbard Transition in a Two-Dimensional 3He Fluid Monolayer

A. Casey, H. Patel, J. Nyéki, B. P. Cowan, and J. Saunders
Millikelvin Laboratory, Department of Physics, Royal Holloway University of London, Egham,

Surrey, TW20 0EX, United Kingdom
(Received 15 November 2002; published 21 March 2003)

The heat capacity and magnetization of a fluid 3He monolayer adsorbed on graphite plated with a
bilayer of HD have been measured in the temperature range 1–60 mK. Approaching the density at
which the monolayer solidifies into a
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commensurate solid, we observe an apparent divergence
of the effective mass and magnetization corresponding to a T " 0 Mott-Hubbard transition between a
2D Fermi liquid and a magnetically disordered solid. The observations are consistent with the
Brinkman-Rice-Anderson-Vollhardt scenario for a metal-insulator transition. We observe a leading
order T2 correction to the linear term in heat capacity.

DOI: 10.1103/PhysRevLett.90.115301 PACS numbers: 67.70.+n, 67.55.–s, 71.10.Ay, 71.30.+h

The study of bulk liquid 3He has played a central role
in the development of theories of interacting Fermi sys-
tems [1]. The interatomic potential consists of a strong
hard core repulsion and a weakly attractive tail. At low
mK temperatures these interactions can be tuned by vary-
ing the pressure from zero to the melting pressure
(34.4 bars), reducing the molar volume by approximately
30%. At sufficiently low temperatures liquid 3He is de-
scribed by Landau Fermi-liquid theory. Over this pres-
sure range the effective mass ratio m#=m increases from
2.80 to 5.85. The Landau parameters which are introduced
phenomenologically to characterize the quasiparticle
interactions have markedly different pressure depen-
dences. Fs

0 which renormalizes the compressibility
increases from 9.3 to 88, but Fa

0 which determines a
ferromagnetic spin-spin interaction merely varies from
$0:7 to $0:75.

There is continuing interest in developing microscopic
models to describe this behavior and strongly correlated
Fermi systems in general. Appealing model systems are
provided by two-dimensional fluid monolayers of 3He
adsorbed on atomically flat substrates. The absence of a
liquid-gas transition in 2D 3He allows the interatomic
spacing in the fluid to be varied over a wide range.
Thereby correlations can be tuned from weak to strong,
simply by varying the surface density of 3He atoms n "
N=A. In this Letter we discuss a simple 3He monolayer,
subjected to a crystalline substrate potential, where it is
found that the 3He solidifies at the appropriate density
into a structure commensurate with this potential. The
focus here is the strong correlations in a 2D fluid which
develop as its density approaches that of this commensu-
rate solid.We argue that this provides a novel example of a
metal-insulator transition in 2D, in which we can track
the associated collapse of the Fermi-liquid ground state
through measurements to well below the degeneracy
temperature. Metal-insulator (MI) transitions continue
to be the subject of widespread interest [2–4], as well
as some controversy [5]. The present system seems to
provide an example of a MI transition occurring via the

Brinkman-Rice-Anderson-Vollhardt scenario [6]. In the
simplest model, one considers half-filling: one particle
per site, and magnetic interactions are neglected. The MI
transition can be regarded as a quantum phase transition
arising from competition between tunneling motion,
tending to reduce zero point kinetic energy, and on-site
repulsion U. This model was applied by Anderson and
Brinkman [7] to bulk liquid 3He, and developed into the
‘‘almost localized fermion’’ model [8]. This involves
introducing a fictitious lattice; the model has also been
generalized away from half-filling [9]. The key results, at
half-filling, are that a MI transition occurs as U ! Uc,
while m#=m ! 1, Fa

0 ! $3=4. The large increase in
compressibility with pressure is also explained [8,10].
Recently results on the polarization dependence of the
specific heat in bulk liquid 3He have been discussed in the
context of such models [11].

The advantages of our experimental system are that it
is truly two dimensional, with no interlayer coupling, and
it has simple short-range interactions and negligible
spin-orbit coupling. A particularly interesting feature
is that the solid is highly magnetically frustrated and it
is believed to have a quantum spin-liquid ground state
[12]. The second layer of 3He adsorbed on bare graphite
has been extensively investigated. The first layer forms a
compressed 2D paramagnetic solid of density 11:2 nm$2,
as determined by neutron scattering [13]. The first heat
capacity measurements of the second layer fluid were well
described by the form c " !% "T [14], where " "
#k2BAm

#=3 !h2. The ! term is attributed to residual sub-
strate heterogeneity [14,15], and A is the area of the
substrate. The effective mass ratio m#=m of the second
layer fluid was found to vary from unity at the lowest
densities to 4.5 at 4:4 nm$2. Measurements of the mag-
netization found enhancements relative to that of an ideal
Fermi gas up to 25 at a density of 5:4 nm$2 [16]. Since
M=M0 " m#=m&1% Fa

0 ', these measurements together
allow a determination of Fa

0 . Although the effective
mass increases with density, Fa

0 appeared to saturate
with Fa

0 ’ $3=4, close to the value observed in bulk
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Dimensional mismatch Kondo systems

Fakher F. Assaad, Hong-Kong, November 19th 2025

Heavy fermions: two types of electrons, fast and slow, that can hybridize.

Topological Kondo insulator.   nslow + nfast  is even

Resulting band structure can have topological properties 

Topological Kondo Insulators

Maxim Dzero,1 Kai Sun,1 Victor Galitski,1 and Piers Coleman2

1Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
2Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 22 December 2009; published 12 March 2010)

Kondo insulators are a particularly simple type of heavy electron material, where a filled band of heavy

quasiparticles gives rise to a narrow band insulator. Starting with the Anderson lattice Hamiltonian, we

develop a topological classification of emergent band structures for Kondo insulators and show that these

materials may host three-dimensional topological insulating phases. We propose a general and practical

prescription of calculating the Z2 topological indices for various lattice structures. Experimental

implications of the topological Kondo insulating behavior are discussed.

DOI: 10.1103/PhysRevLett.104.106408 PACS numbers: 71.27.+a, 74.50.+r, 75.20.Hr

Kondo insulators are a particularly simple type of heavy
fermion material, first discovered 40 years ago [1], in
which highly renormalized f-electrons, hybridized with
conduction electrons, form a completely filled band of
quasiparticles with excitation gaps in the millivolt range
[2,3]. While these materials are strongly interacting elec-
tron systems, their excitations and their ground states can
be regarded as adiabatically connected to noninteracting
band insulators [4].

It was recently shown that time-reversal invariant band
insulators can be classified by the topological structure of
their ground state wave functions [5–9]. One of the dra-
matic consequences of this discovery is the existence of a
new class of ‘‘topological’’ band insulator in which strong
spin-orbit coupling leads to a ground state that is topologi-
cally distinct from the vacuum, giving rise to gapless
surface excitations.

In this Letter, we show that Kondo insulators, as adia-
batic descendents of band insulators, can also be topo-
logically classified. The strong spin-orbit coupling char-
acteristic of these materials leads us to predict that a subset
of Kondo insulators are topologically nontrivial, with
anomalous surface excitations. In current models of topo-
logical insulators, the spin-orbit coupling is encoded in a
spin-dependent hopping amplitudes between different unit
cells. By contrast, in a topological Kondo insulator (TKI),
we show that the topologically nontrivial insulating state is
produced by the spin-orbit coupling associated with the
hybridization between conduction and f electrons.

Below, we develop a model for topological KIs. The
physics we study is motivated by the canonical Kondo
insulating behavior of SmB6 [1] and Ce3Bi4Pt3 [10]. The
realization of a particular topologically nontrivial insulat-
ing state depends on the position of renormalized f level
relative to the bottom of the conduction band, Fig. 1. To
analyze the topology of the bands in these materials, we
use a periodic Anderson lattice model.

In a KI, the insulating state arises due to hybridization
between the conduction and f electrons, provided that the

chemical potential lies inside the hybridization gap sepa-
rating the quasiparticle bands. The spatial symmetry of the
hybridization amplitude is determined by the symmetry of
the underlying crystal-field Kramers doublets of the rare-
earth ion, and it is precisely this symmetry that is respon-
sible for nontrivial topological structures in a KI. To ana-
lyze this topology, we first employ a tight-binding model
on a simple cubic lattice, which is adiabatically connected
to the Hamiltonian of the KI material. We show that in this
case, band topology is uniquely determined by the non-
interacting band structure of the system in the absence of
hybridization. Second, we consider a more general KI in a
lattice with a body centered cubic lattice, and show that
regardless of microscopic details, there always exists a
parameter range in which a KI is a strong topological
insulator (STI).
We begin with the periodic Anderson Kondo lattice

Hamiltonian, written in terms of the fermion operators
associated with the crystal-field symmetry of the under-
lying lattice
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FIG. 1 (color online). Values of strong and weak topological
indices and signs of !i (see text) at the high-symmetry points of
the Brillouin zone (BZ) are shown as a function of position of the
renormalized f level relative to the bottom of the conduction
band. For the simple cubic tight-binding spectrum of the form
"k ¼ "2t

P
a¼x;y;z coska topologically strong, weak Kondo insu-

lating behavior as well as regular band insulator (j"fj> 6t) can
be realized.
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Nontrivial topology in condensed-matter systems enriches quan-
tum states of matter to go beyond either the classification into
metals and insulators in terms of conventional band theory or
that of symmetry-broken phases by Landau’s order parameter
framework. So far, focus has been on weakly interacting systems,
and little is known about the limit of strong electron correla-
tions. Heavy fermion systems are a highly versatile platform to
explore this regime. Here we report the discovery of a giant
spontaneous Hall effect in the Kondo semimetal Ce3Bi4Pd3 that
is noncentrosymmetric but preserves time-reversal symmetry. We
attribute this finding to Weyl nodes—singularities of the Berry
curvature—that emerge in the immediate vicinity of the Fermi
level due to the Kondo interaction. We stress that this phe-
nomenon is distinct from the previously detected anomalous Hall
effect in materials with broken time-reversal symmetry; instead,
it manifests an extreme topological response that requires a
beyond-perturbation-theory description of the previously pro-
posed nonlinear Hall effect. The large magnitude of the effect in
even tiny electric and zero magnetic fields as well as its robust
bulk nature may aid the exploitation in topological quantum
devices.

Weyl semimetal | Kondo effect | spontaneous Hall effect |
preserved time-reversal symmetry

Exploring effects of topology (1–7) in weakly correlated
condensed-matter systems has led to the identification of

fundamentally new quantum phases and phenomena, includ-
ing the spin Hall effect (8), protected transport of helical
fermions (9), topological superconductivity (10), and large non-
linear optical response (11, 12). In the recently discovered Weyl
semimetals, bulk three-dimensional (3D) Dirac cones describ-
ing massless relativistic quasiparticles are stabilized by breaking
either inversion symmetry (IS) or time-reversal symmetry (TRS)
(13). Key experiments in their identification have been angle-
resolved photoemission spectroscopy (ARPES) (14–16) as well
as magnetotransport measurements, providing evidence for the
chiral anomaly (13, 17, 18)—charge pumping between a pair of
Weyl nodes—via a large negative longitudinal magnetoresistance
or, for nanostructures in high magnetic fields, Weyl orbits via
quantum oscillation (19) or quantum Hall measurements (20).
Whereas the perturbative effect of correlations on topological
electronic states is already under broad investigation (21–24), a
completely open question is how strong correlations drive either
related or entirely new topological states (25–29). To uncover
them experimentally, not only new materials but also alterna-
tive measurement techniques have to be found. For instance,
to characterize the recently proposed Weyl–Kondo semimetals
(30, 31) neither of the canonical probes for weakly interacting
Weyl semimetals seems suitable: ARPES experiments still lack
the ultrahigh resolution needed to resolve strongly renormalized
bands and magnetotransport signatures of the chiral anomaly
or Weyl orbits are expected to be suppressed by the reduced

quasiparticle velocities of strongly correlated materials (18). Our
discovery of a giant spontaneous Hall effect in one such mate-
rial not only identifies an ideal technique but also demonstrates
that strong correlations can drive extreme topological responses,
which we expect to trigger much further work.

The material we have investigated is the noncentrosymmetric
and nonsymmorphic heavy fermion semimetal Ce3Bi4Pd3 (30)
that has recently been identified as a candidate Weyl–Kondo
semimetal (30, 31). Its low-temperature specific heat contains a
giant electronic c=�T 3 term that was attributed to electronic
states with extremely flat linear dispersion (30), corresponding
to a quasiparticle velocity v? that is renormalized by a factor of
103 with respect to the Fermi velocity of a simple metal (30,
31). This boosts the electronic �T 3 term to the point that it
even overshoots the Debye �T 3 term of acoustic phonons (30).
To scrutinize this interpretation by other, more direct probes of
topology is the motivation for the present work.

Results

We start by showing that Ce3Bi4Pd3 is governed by the Kondo
interaction and delineate the temperature and field range
of Kondo coherence. The zero-field resistivity of Ce3Bi4Pd3

increases weakly with decreasing temperature, whereas the non-
magnetic reference compound La3Bi4Pd3 is metallic (Fig. 1A).
This provides strong evidence that the semimetallic character of
Ce3Bi4Pd3 is due to the Kondo interaction. Below the single-
ion Kondo temperature TK =13 K, identified by associating
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Nontrivial topology in condensed-matter systems enriches quan-
tum states of matter to go beyond either the classification into
metals and insulators in terms of conventional band theory or
that of symmetry-broken phases by Landau’s order parameter
framework. So far, focus has been on weakly interacting systems,
and little is known about the limit of strong electron correla-
tions. Heavy fermion systems are a highly versatile platform to
explore this regime. Here we report the discovery of a giant
spontaneous Hall effect in the Kondo semimetal Ce3Bi4Pd3 that
is noncentrosymmetric but preserves time-reversal symmetry. We
attribute this finding to Weyl nodes—singularities of the Berry
curvature—that emerge in the immediate vicinity of the Fermi
level due to the Kondo interaction. We stress that this phe-
nomenon is distinct from the previously detected anomalous Hall
effect in materials with broken time-reversal symmetry; instead,
it manifests an extreme topological response that requires a
beyond-perturbation-theory description of the previously pro-
posed nonlinear Hall effect. The large magnitude of the effect in
even tiny electric and zero magnetic fields as well as its robust
bulk nature may aid the exploitation in topological quantum
devices.

Weyl semimetal | Kondo effect | spontaneous Hall effect |
preserved time-reversal symmetry

Exploring effects of topology (1–7) in weakly correlated
condensed-matter systems has led to the identification of

fundamentally new quantum phases and phenomena, includ-
ing the spin Hall effect (8), protected transport of helical
fermions (9), topological superconductivity (10), and large non-
linear optical response (11, 12). In the recently discovered Weyl
semimetals, bulk three-dimensional (3D) Dirac cones describ-
ing massless relativistic quasiparticles are stabilized by breaking
either inversion symmetry (IS) or time-reversal symmetry (TRS)
(13). Key experiments in their identification have been angle-
resolved photoemission spectroscopy (ARPES) (14–16) as well
as magnetotransport measurements, providing evidence for the
chiral anomaly (13, 17, 18)—charge pumping between a pair of
Weyl nodes—via a large negative longitudinal magnetoresistance
or, for nanostructures in high magnetic fields, Weyl orbits via
quantum oscillation (19) or quantum Hall measurements (20).
Whereas the perturbative effect of correlations on topological
electronic states is already under broad investigation (21–24), a
completely open question is how strong correlations drive either
related or entirely new topological states (25–29). To uncover
them experimentally, not only new materials but also alterna-
tive measurement techniques have to be found. For instance,
to characterize the recently proposed Weyl–Kondo semimetals
(30, 31) neither of the canonical probes for weakly interacting
Weyl semimetals seems suitable: ARPES experiments still lack
the ultrahigh resolution needed to resolve strongly renormalized
bands and magnetotransport signatures of the chiral anomaly
or Weyl orbits are expected to be suppressed by the reduced

quasiparticle velocities of strongly correlated materials (18). Our
discovery of a giant spontaneous Hall effect in one such mate-
rial not only identifies an ideal technique but also demonstrates
that strong correlations can drive extreme topological responses,
which we expect to trigger much further work.

The material we have investigated is the noncentrosymmetric
and nonsymmorphic heavy fermion semimetal Ce3Bi4Pd3 (30)
that has recently been identified as a candidate Weyl–Kondo
semimetal (30, 31). Its low-temperature specific heat contains a
giant electronic c=�T 3 term that was attributed to electronic
states with extremely flat linear dispersion (30), corresponding
to a quasiparticle velocity v? that is renormalized by a factor of
103 with respect to the Fermi velocity of a simple metal (30,
31). This boosts the electronic �T 3 term to the point that it
even overshoots the Debye �T 3 term of acoustic phonons (30).
To scrutinize this interpretation by other, more direct probes of
topology is the motivation for the present work.

Results

We start by showing that Ce3Bi4Pd3 is governed by the Kondo
interaction and delineate the temperature and field range
of Kondo coherence. The zero-field resistivity of Ce3Bi4Pd3

increases weakly with decreasing temperature, whereas the non-
magnetic reference compound La3Bi4Pd3 is metallic (Fig. 1A).
This provides strong evidence that the semimetallic character of
Ce3Bi4Pd3 is due to the Kondo interaction. Below the single-
ion Kondo temperature TK =13 K, identified by associating

Significance

States of matter are traditionally classified by their symme-
try, as exemplified by the distinction between a solid and a
liquid. Topological quantum phases, on the other hand, are
harder to characterize, and still harder to identify. This is espe-
cially so in electronic systems with strong correlations. In this
work, we uncover a purely electric-field-driven “giant” Hall
response—orders of magnitude above expectation—in one
such material and propose a mechanism whereby it is driven
by strong correlations. Our results will enable the identifi-
cation of electronic topological states in a broad range of
strongly correlated quantum materials and may trigger efforts
toward their exploitation in robust quantum electronics.
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Dimensional mismatch Kondo systems

Fakher F. Assaad, Hong-Kong, November 19th 2025

Heavy fermions: two types of electrons, fast and slow, that can hybridize.

hybridization (∼20 meV) between the f and c bands.
The interacting Hamiltonian also couples the f and
c electrons through the presence of several types of
interactions. Using this model, the ground states
[1,2,44,50,53,65,68,71,77,84–86,114] and their topo-
logies can be understood in a simple, physical picture.
The quasiparticle excitation bandwidth can even be ana-
lytically determined.
Topological heavy fermion model.—The single-valley

BM model has the symmetry of the magnetic space
group P60202, generated by C3z, C2x, C2zT, and moiré
translations. (See Refs. [41,115] for this group and its
irreducible representations—irreps.) The energy bands
in the valley η ¼ þ of the BM model are shown in
Fig. 1(b), where the bands are labeled by their irreps.
References [41,42] showed that the irreps formed by the
two flat bands, i.e., Γ1 ⊕ Γ2; M1 ⊕ M2; K2K3, are not
consistent with any local orbitals (band representations
[126]) and indicate a fragile [127–130] topological obstruc-
tion to a two-band lattice model. Here, we resolve the fra-
gile topology by involving higher energy bands. Suppose
we can “borrow” a Γ3 irrep from higher (∼20 meV) energy
bands and use it to replace the Γ1 ⊕ Γ2 states; then the
replaced irreps—Γ3, M1 ⊕ M2, and K2K3—are consistent
with px # ipy orbitals located at the triangular lattice. We
hence introduce two trial Gaussian-type Wannier functions
(WFs) that transform as px # ipy orbitals under the
crystalline symmetries. As indicated by the overlaps
between the trial WFs and the Bloch bands [Fig. 1(a)],

the trial WFs are supported by the flat band states at k away
from ΓM and by the lowest higher energy band states
around ΓM. Feeding the overlaps into the program
WANNIER90 [116–118], we obtain the corresponding max-
imally localized WFs, density profile of which is shown in
Fig. 1(b) [115]. (Similar local states are also discussed
using different methods in Refs. [38,112].) These WFs are
extremely localized—their nearest neighbor hoppings are
about 0.1 meV—and span 96% percent of the flat bands.
To recover the irreps and topology of the middle two

bands, we have to take into account the remaining 4%
states, without which the localized electrons could not
form a superconductor. To do this, we define the pro-
jector into the WFs as P, the projector into the lowest six
bands (per spin valley) as I, and divide the low energy
BM Hamiltonian HBM into four parts: HðfÞ ¼ PHBMP,
HðcÞ ¼ QHBMQ, HðfcÞ ¼ PHBMQ, and HðcfÞ ¼ HðfcÞ†,
where Q ¼ I − P, HðcÞ is the remaining Hamiltonian,
and HðfcÞ þ H:c: is the coupling between WFs and the
remaining states. As the couplings between WFs are
extremely weak (∼0.1 meV) we find HðfÞ ≈ 0. Since the
two states in P form Γ3 at ΓM, the four states in Q must
form Γ3 ⊕ Γ1 ⊕ Γ2 at ΓM due to the irrep counting.
Because of the crystalline and P symmetries, HðcÞ in the
valley η takes the form [115]

Hðc;ηÞðkÞ ¼
!

02×2 v⋆ðηkxσ0 þ ikyσzÞ
v⋆ðηkxσ0 − ikyσzÞ Mσx

"

ð1Þ

to linear order of k, where the first two-by-two block is
spanned by the Γ3 states and the second two-by-two block
is spanned by the Γ1 ⊕ Γ2 states. The Γ1 and Γ2 states are
split by the M term [blue bands in Fig. 1(c)], while the Γ3

states form a quadratic touching at k ¼ 0, which is shown
in Ref. [115] responsible to the symmetry anomaly [104]
jointly protected by C2zT and P. The coupling HðfcÞ in the
valley η has the form

Hðfc;ηÞðkÞ ¼ ½γσ0 þ v0⋆ðηkxσx þ kyσyÞ; 02×2'; ð2Þ

where the second block is computed to be extremely small
and hence is omitted and written as 02×2. Hðfc;ηÞ will gap
Hðc;ηÞ, and hence provides for both the single particle
gap and for the flat band topology of the BM model. Using
a set of usually adopt parameters for MATBG, we find
v⋆ ¼ −4.303 eVÅ, M ¼ 3.697 meV, γ ¼ −24.75 meV,
and v0⋆ ¼ 1.622 eVÅ.
Since the WFs and the remaining “c” degrees of freedom

have localized and plane-wave-like wave functions, respec-
tively, we make the analogy with local orbitals and
conduction bands in heavy fermion systems. We refer to
them as local f orbitals and (topological) conduction c

(a) (b) (c)

FIG. 1. Topological heavy fermion model. (a) A sketch of the
moiré unit cell of MATBG and its heavy fermion analog, where
the local moments and itinerant electrons are formed by the
effective f orbitals at the AA-stacking regions and topological
conduction bands (c), respectively. (b) The band structure of the
BM model at the magic angle θ ¼ 1.05°, where the moiré BZ and
high symmetry momenta are illustrated in the upper inset panel.
The overlaps between the Bloch states and the trial WFs are
represented by the red circles. The density profile of the
constructed maximally localized WFs (f orbitals) is shown in
the lower inset panel. (c) Bands given by the topological heavy
fermion model (black lines) compared to the BM bands (blue
crosses). The c (blue) and f bands (red) in the decoupled limit,
where γ ¼ v0⋆ ¼ 0, are shown in the inset. Orange dashed lines
indicate the evolution of energy levels as f-c coupling is
turned on.
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Magic-angle (θ ¼ 1.05°) twisted bilayer graphene (MATBG) has shown two seemingly contradictory
characters: the localization and quantum-dot-like behavior in STM experiments, and delocalization in
transport experiments. We construct a model, which naturally captures the two aspects, from the Bistritzer-
MacDonald (BM) model in a first principle spirit. A set of local flat-band orbitals (f) centered at the
AA-stacking regions are responsible to the localization. A set of extended topological semimetallic
conduction bands (c), which are at small energetic separation from the local orbitals, are responsible to the
delocalization and transport. The topological flat bands of the BM model appear as a result of the
hybridization of f and c electrons. This model then provides a new perspective for the strong correlation
physics, which is now described as strongly correlated f electrons coupled to nearly free c electrons—we
hence name our model as the topological heavy fermion model. Using this model, we obtain the U(4) and
Uð4Þ × Uð4Þ symmetries of Refs. [1–5] as well as the correlated insulator phases and their energies. Simple
rules for the ground states and their Chern numbers are derived. Moreover, features such as the large
dispersion of the charge $1 excitations [2,6,7], and the minima of the charge gap at the ΓM point can now,
for the first time, be understood both qualitatively and quantitatively in a simple physical picture. Our
mapping opens the prospect of using heavy-fermion physics machinery to the superconducting physics
of MATBG.

DOI: 10.1103/PhysRevLett.129.047601

Introduction.—Since the initial experimental discovery
of the correlated insulator phases [8] and superconductivity
[9] in, agic-angle (θ ¼ 1.05°) twisted bilayer graphene
(MATBG) [10], extensive experimental [11–35] and theo-
retical [1–7,36–113] efforts have been made to understand
the nature of these exotic phases. Theoretical challenges for
understanding the correlation physics come from both the
strong interaction compared to relatively small bandwidth
as well as from the topology [36,38,41–43,104], which
forbids a symmetric lattice description of the problem. The
two flat bands of MATBG possess strong topology in the
presence of C2zT (time-reversal followed by C2z rotation)
and particle-hole (P) symmetries [104], which supersedes
the earlier, C2zT symmetry-protected fragile topology
[41,42]. This strong topology extends to the entire con-
tinuum Bistritzer-MacDonald (BM) model, and implies the
absence of a lattice model for any number of bands. The
topology is also responsible to exotic phases such as
quantum anomalous Hall states [2,5,55,60,82,84] and
fractional Chern states [96,98,99,109].
Two types of complementary strategies have

been proposed to resolve the problem of the lattice
description. One is to construct extended Hubbard
models [1,7,37,40,42,49,51,67,71], where either C2zT
[1,7,40,49,67] or P [42] becomes nonlocal in real space.

The other is to adopt a full momentum-space formalism
[2,5,6,85,86,105,106,111], where locality becomes hidden.
(Besides the two strategies, some phenomenological
models are also proposed [39,48,63,64,90,92,97,100].)
The real and momentum space strong coupling models
elucidated the nature of the correlated insulator states: they
are ferromagnets—sometimes carrying Chern numbers—in
a large U(4) or Uð4Þ × Uð4Þ symmetry space that contains
spin, valley, and band quantum number [1,2,4]. The
dispersion of the excitations above the correlated insulators
[2,6,7]—where superconductivity appears upon doping—
is, despite being exact—not physically understood.
In the current Letter, nevertheless, we find it possible

to write down a fully symmetric model that has a simple
real space picture, which, remarkably and elegantly, solves
the aforementioned puzzles. We reformulate and map
the interacting MATBG as an effective topological heavy
fermion system, which consists of local orbitals (f)
centered at the AA-stacking regions and delocalized topo-
logical conduction bands (c). The f electrons are so
localized that they have an almost zero kinetic energy
(∼0.1 meV) but a strong on-site Coulomb repulsion that we
compute to be ∼60 meV. The c electrons carry the
symmetry anomaly and have unbounded kinetic energies.
The actual flat bands of the BM model are from a
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possibly in the form of a metallic spin liquid. Concrete 
theoretical studies of the global phase diagram in frus-
trated Kondo lattice models have been carried out, using 
a large- N method in the case of the Shastry–Sutherland 
lattice93 and through a quantum Monte Carlo technique 
for a model on the honeycomb lattice94.

To link such theoretical phase diagrams to experi-
ments, one should be able to quantify the degree of frus-
tration and, ideally, continuously vary it by some external 
tuning parameter. In insulating quantum magnets, the 
frustration strength can be quantified by the ratio of  
the paramagnetic Weiss temperature and the ordering 
temperature or, in a more sophisticated way, by model-
ling magnetic structure data to extract exchange inter-
actions95,96. In heavy fermion systems, however, the local 
moment exchange interaction is typically dominated by 
the long- ranged RKKY interaction, and thus the con-
duction electrons and anisotropies in their densities 
of states at the Fermi level may also play an important  
role in defining the degree of frustration.

Yet, so far, frustration in heavy fermion systems 
has been discussed mostly in terms of the more intu-
itive concept of local moments situated on (partially) 
frustrated lattices97–103. Examples are Pr2Ir2O7 with a 
pyrochlore lattice of Pr atoms97,103, CeRhSn (REF.100) and 
CePdAl (REFS99,102) with Ce atoms located on distorted 
kagome planes, and HoInCu4 with a face- centred cubic 
(fcc) lattice of the Ho atoms104 (although the Kondo 
interaction in this latter low- carrier density system is 
likely to be negligible). In Pr2Ir2O7, non- Fermi- liquid 
behaviour is observed above certain cutoffs in tempera-
ture and field (with the cutoffs possibly originating from 
spin freezing)97,105. The non- Fermi- liquid behaviour 
could be due to spin liquid behaviour or quantum criti-
cality from a nearby magnetic QCP. In CeRhSn, thermo-
dynamic properties show non- Fermi- liquid behaviour 
only within the frustrated plane100, while it is suppressed 
under uniaxial pressure applied within the plane, which 
lifts the frustration106. These observations are inter-
preted as providing evidence for frustration- induced 
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Fig. 6 | Composite and boosted interactions. a ∣ Phase diagram of 
temperature versus tuning parameter for the heavy fermion compound 
Ce3Pd20Si6, featuring phases of antiferromagnetic (AFM) and antiferro-
quadrupolar (AFQ) order that are suppressed at two consecutive quantum 
critical points (red square and red star), from which non- Fermi- liquid 
behaviour with a resistivity exponent a (colour bar) close to 1 emerges.  
b ∣ Sketches visualizing the interaction of spin, σ, and orbital, τ, degrees of 
freedom with conduction electrons, c, in the form of two stages of Kondo 
destruction. c ∣ Degrees of freedom that entangle in the Kondo phases of 
Ce3Pd20Si6. d ∣ Second energy derivative of angle resolved photoemission 
spectroscopy data of monolayer FeSe on SrTiO3, revealing replicas (dashed 
guides- to- the- eye) of the main bands (full lines). kpar refers to momentum 
along the Γ–M direction. e ∣ Thermopower, S, at 300 K of the type- I 
clathrate Ce1.1Ba6.9Au5.5Si40.5 (yellow symbol) compared with non-4f 

reference compounds (blue, red) of various charge-carrier concentra-
tions n. The inset sketches the type- I clathrate crystal structure, with two 
molecular cages highlighted by blue shading. f ∣ Superfluid density, ρ0, 
versus product of zero- frequency conductivity σdc (measured just above 
the superconducting transition, Tc) and Tc, including what is interpreted  
as the transition temperature after pumping (red symbol, where σco is  
the conductivity just above the charge ordering temperature, Tco), for  
several dopings of La2−xBaxCuO4, providing an indication of light-boosted 
superconductivity. The error bars represent uncertainties in extracting  
the respective quantities from the experiments. Parts a, b and c are 
adapted with permission from REF.14. Part b is adapted with permission  
from REF.14. Part d is adapted with permission from REF.168. Part e is  
adapted with permission from REF.117. Part f is adapted with permission  
from REF.173.
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Complex and correlated quantum systems with promise for new
functionality often involve entwined electronic degrees of free-
dom. In such materials, highly unusual properties emerge and
could be the result of electron localization. Here, a cubic heavy
fermion metal governed by spins and orbitals is chosen as a
model system for this physics. Its properties are found to origi-
nate from surprisingly simple low-energy behavior, with 2 distinct
localization transitions driven by a single degree of freedom at a
time. This result is unexpected, but we are able to understand
it by advancing the notion of sequential destruction of an SU(4)
spin–orbital-coupled Kondo entanglement. Our results implicate
electron localization as a unified framework for strongly corre-
lated materials and suggest ways to exploit multiple degrees of
freedom for quantum engineering.

quantum criticality | spin–orbital entwining | electron localization–
delocalization transition | heavy fermion compounds | Kondo destruction

S trongly correlated electron systems represent a vibrant fron-
tier in modern condensed-matter physics. They often contain

multiple degrees of freedom, which may be harnessed for future
applications in electronic devices. One famous example is the
manganites, in which both spin and orbital degrees of freedom
play an important role (1). Others are the iron-based super-
conductors (2) and fullerides (3). In the cuprates, charge order
emerges and interplays with the spin degrees of freedom to influ-
ence their low-energy properties (4, 5). Even in magic-angle
graphene, the physics likely depends on both the spin and val-
ley degrees of freedom (6). These systems display a rich variety of
exotic properties at low energies (4–12). Finding simplicity out of
this complexity is a central goal of the field. An emerging notion
is that electron localization may be an organizing principle that
can accomplish this goal (13).

Results

We have chosen heavy fermion materials as a setting for our
study because they can be readily tuned to localization transi-
tions and display sharp features thereof. The f electron’s spin
in a heavy fermion compound corresponds to a well-defined
local degree of freedom. At the same time, it is still sufficiently
coupled to the conduction electrons that its behavior can be
probed through the latter. In the ground state, Kondo entan-
glement generally leads to the formation of a many-body spin
singlet between the local moment and conduction electrons.
Electronic localization of this electron fluid can then be realized
as a function of a nonthermal control parameter (8–11, 14–18)
and has been understood in terms of the destruction of Kondo
entanglement (19–22). The accompanying strange-metal behav-
ior, the onset of magnetic ordering of the liberated spins, and
unconventional superconductivity are prominent features (8–11,
14–18) that make this transition both readily observable and
broadly important.

To explore the intricate interplay of multiple quantum num-
bers in this setting, a local degree of freedom in addition to the

electron’s spin should come into play. The simplest such case in
heavy fermion systems may arise in cubic Ce-based compounds.
Due to strong intraatomic spin–orbit coupling, the spin and
orbital degrees of freedom of the Ce 4f 1 electron are described
in terms of the total angular momentum J that encompasses
both spins (dipoles) and higher multipolar moments. Ce- and
Yb-based heavy fermion materials often have crystalline sym-
metries lower than cubic. In that case, the lowest crystal electric
field (CEF) level would be a Kramers doublet. In the cubic case,
however, symmetry allows for CEF levels with higher degener-
acy, such as the 4-fold �8 level, in the case of both the [Xe]4f 1
wavefunction of a Ce+3 ion (for the total angular momentum
J =5/2) and the [Xe]4f 13 wavefunction of a Yb+3 ion (for
J =7/2). When this level is the lowest in energy, we end up
with 1 f electron (or hole in the Yb-based systems) occupy-
ing a 4-fold degenerate local level, which can be characterized
by spin and orbital quantum numbers (23). This is indeed the
case in the intermetallic compound Ce3Pd20Si6 (Fig. 1A and SI

Appendix, section S4). In zero field, it is at first the quadrupolar
moments that order into an antiferroquadrupolar (AFQ) phase

Significance

Many of the most fascinating and actively investigated mate-
rials classes host strongly correlated electrons. Their under-
standing is challenging because the strong correlations cause
entwining of multiple degrees of freedom of an electron, such
as spin, orbital, and charge. This complexity is ubiquitous and
underlies many of the rich properties. The question then is
whether there are universal organizing principles that provide
simplicity to the description. Here, by studying a prototype
material with entwined spin and orbital degrees of freedom
and a theoretical model pertinent to it, we have demon-
strated correlation-driven electron localization–delocalization
as such a principle. It happens sequentially, involving a single
quantum number at a time, thus deciphering the roles of the
individual degrees of freedom.
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Complex and correlated quantum systems with promise for new
functionality often involve entwined electronic degrees of free-
dom. In such materials, highly unusual properties emerge and
could be the result of electron localization. Here, a cubic heavy
fermion metal governed by spins and orbitals is chosen as a
model system for this physics. Its properties are found to origi-
nate from surprisingly simple low-energy behavior, with 2 distinct
localization transitions driven by a single degree of freedom at a
time. This result is unexpected, but we are able to understand
it by advancing the notion of sequential destruction of an SU(4)
spin–orbital-coupled Kondo entanglement. Our results implicate
electron localization as a unified framework for strongly corre-
lated materials and suggest ways to exploit multiple degrees of
freedom for quantum engineering.

quantum criticality | spin–orbital entwining | electron localization–
delocalization transition | heavy fermion compounds | Kondo destruction

S trongly correlated electron systems represent a vibrant fron-
tier in modern condensed-matter physics. They often contain

multiple degrees of freedom, which may be harnessed for future
applications in electronic devices. One famous example is the
manganites, in which both spin and orbital degrees of freedom
play an important role (1). Others are the iron-based super-
conductors (2) and fullerides (3). In the cuprates, charge order
emerges and interplays with the spin degrees of freedom to influ-
ence their low-energy properties (4, 5). Even in magic-angle
graphene, the physics likely depends on both the spin and val-
ley degrees of freedom (6). These systems display a rich variety of
exotic properties at low energies (4–12). Finding simplicity out of
this complexity is a central goal of the field. An emerging notion
is that electron localization may be an organizing principle that
can accomplish this goal (13).

Results

We have chosen heavy fermion materials as a setting for our
study because they can be readily tuned to localization transi-
tions and display sharp features thereof. The f electron’s spin
in a heavy fermion compound corresponds to a well-defined
local degree of freedom. At the same time, it is still sufficiently
coupled to the conduction electrons that its behavior can be
probed through the latter. In the ground state, Kondo entan-
glement generally leads to the formation of a many-body spin
singlet between the local moment and conduction electrons.
Electronic localization of this electron fluid can then be realized
as a function of a nonthermal control parameter (8–11, 14–18)
and has been understood in terms of the destruction of Kondo
entanglement (19–22). The accompanying strange-metal behav-
ior, the onset of magnetic ordering of the liberated spins, and
unconventional superconductivity are prominent features (8–11,
14–18) that make this transition both readily observable and
broadly important.

To explore the intricate interplay of multiple quantum num-
bers in this setting, a local degree of freedom in addition to the

electron’s spin should come into play. The simplest such case in
heavy fermion systems may arise in cubic Ce-based compounds.
Due to strong intraatomic spin–orbit coupling, the spin and
orbital degrees of freedom of the Ce 4f 1 electron are described
in terms of the total angular momentum J that encompasses
both spins (dipoles) and higher multipolar moments. Ce- and
Yb-based heavy fermion materials often have crystalline sym-
metries lower than cubic. In that case, the lowest crystal electric
field (CEF) level would be a Kramers doublet. In the cubic case,
however, symmetry allows for CEF levels with higher degener-
acy, such as the 4-fold �8 level, in the case of both the [Xe]4f 1
wavefunction of a Ce+3 ion (for the total angular momentum
J =5/2) and the [Xe]4f 13 wavefunction of a Yb+3 ion (for
J =7/2). When this level is the lowest in energy, we end up
with 1 f electron (or hole in the Yb-based systems) occupy-
ing a 4-fold degenerate local level, which can be characterized
by spin and orbital quantum numbers (23). This is indeed the
case in the intermetallic compound Ce3Pd20Si6 (Fig. 1A and SI

Appendix, section S4). In zero field, it is at first the quadrupolar
moments that order into an antiferroquadrupolar (AFQ) phase

Significance

Many of the most fascinating and actively investigated mate-
rials classes host strongly correlated electrons. Their under-
standing is challenging because the strong correlations cause
entwining of multiple degrees of freedom of an electron, such
as spin, orbital, and charge. This complexity is ubiquitous and
underlies many of the rich properties. The question then is
whether there are universal organizing principles that provide
simplicity to the description. Here, by studying a prototype
material with entwined spin and orbital degrees of freedom
and a theoretical model pertinent to it, we have demon-
strated correlation-driven electron localization–delocalization
as such a principle. It happens sequentially, involving a single
quantum number at a time, thus deciphering the roles of the
individual degrees of freedom.

Author contributions: Q.S. and S.P. designed research; V.M., A.C., E.M.N., M.T., A.P.,
C.-C.L., H.-H.L., R.Y., K.I., R.K., A.M.S., D.G., J.H., J.L., Q.S., and S.P. performed research;
and Q.S. and S.P. wrote the paper with assistance from A.C.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 V.M. and A.C. contributed equally to this work.y
2 Present address: Institute of Physics, University of São Paulo, CEP 05508-090 São Paulo,
Brazil.y

3 Present address: Department of Physics and Astronomy and Quantum Matter Institute,
University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.y

4 To whom correspondence may be addressed. Email: qmsi@rice.edu or paschen@ifp.
tuwien.ac.at.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1908101116/-/DCSupplemental.y

Published online August 20, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1908101116 PNAS | September 3, 2019 | vol. 116 | no. 36 | 17701–17706

D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/w

w
w

.p
na

s.o
rg

 b
y 

U
N

IV
ER

SI
TA

ET
SB

IB
LI

O
TH

EK
 W

U
ER

ZB
U

RG
 Z

EI
TS

CH
RI

FT
EN

ST
EL

LE
 o

n 
Fe

br
ua

ry
 2

9,
 2

02
4 

fro
m

 IP
 a

dd
re

ss
 1

32
.1

87
.2

53
.2

8.



Periodic  Anderson model 

Coherence and metamagnetism in the two-dimensional Kondo lattice model
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We report the results of dynamical mean-field calculations for the metallic Kondo lattice model subject to an
applied magnetic field. High-quality spectral functions reveal that the picture of rigid, hybridized bands, which
are Zeeman shifted in proportion to the field strength, is qualitatively correct. We find evidence of a zero-
temperature magnetization plateau whose onset coincides with the chemical potential entering the spin up
hybridization gap. The plateau appears at the field scale predicted by a !static" large-N mean-field theory and
has a magnetization value consistent with that of x=1−nc spin-polarized heavy holes, where nc!1 is the
conduction band filling of the noninteracting system. We argue that the emergence of the plateau at a low
temperature marks the onset of quasiparticle coherence.

DOI: 10.1103/PhysRevB.77.205123 PACS number!s": 71.27."a, 71.10.Fd, 73.22.Gk

I. INTRODUCTION

The paramagnetic, metallic ground state of heavy fermion
compounds1,2 can be interpreted as a Fermi liquid with a low
coherence temperature and a large effective mass.3 The ori-
gin of the coherence temperature lies in the nature of the
quasiparticles, which emerge as a coherent superposition of
the Kondo screening clouds of the individual magnetic im-
purities. Being a Fermi liquid, the heavy fermion ground
state is well captured by large-N mean-field theories that
predict a renormalized band structure. At this level of ap-
proximation, the key properties—such as the effective mass
and the Fermi-surface topology—are reproduced.

Mean-field approaches that are static in time, however, do
not properly incorporate the Kondo screening and, hence, do
not account for the many-body nature of the quasiparticles.
Such approaches become questionable when the system is
subject to perturbations, such as large temperatures or strong
magnetic fields, that have the potential to destroy the Kondo
screening, hence, the motivation to consider dynamical
mean-field theories !DMFTs", wherein the Kondo effect is
built in.

The problem of a Kondo lattice insulator !symmetric con-
duction band at half filling" in a magnetic field has previ-
ously been treated approximately by using a DMFT4 and
exactly by using quantum Monte Carlo.5,6 In that special
case, the only important low-energy scale is the indirect gap
separating upper and lower quasiparticle bands. In the metal-
lic case !e.g., filling less than half", there is an additional,
smaller energy scale given by the separation between the
chemical potential and the top of the lower band.7 This scale
is generically small regardless of the conduction band filling
and controls the Fermi liquid properties. As we shall see, it
also sets the magnetic field scale for the onset of metamag-
netic features.

The static mean-field scenario for the application of a
magnetic field at zero temperature is as follows: As the field
strength is increased, the spin up quasiparticle bands de-
scend. The spin up Fermi surface shrinks to a point and
disappears as the lower band drops below the chemical
potential.8–10 The resulting half-metallic state11 has mean-

field parameters that are locked at the values obtained before
the disappearance of the spin up Fermi surface and are com-
pletely insensitive to changes in the field.9,10 As a result, the
physical magnetization −!F /!B !where F is the free energy"
has a constant slope proportional to the difference between
the Landé g factors for the two species. If the c and f elec-
trons identically couple to the applied field, the system is
predicted to exhibit a magnetization plateau at a value that
depends only on the conduction band filling nc. Note that the
dimensionless magnetization M = !nc,↑−nc,↓"+ !nf ,↑−nf ,↓" al-
ways shows the plateau behavior irrespective of the values of
gc and gf. This is related to the fact that in the locked state,
the system behaves as a gas of x=1−nc fully spin-polarized,
heavy-quasiparticle holes.

Our DMFT results verify this scenario. We find that the
magnetization profile begins to develop an inflection at tem-
peratures on the order of the predicted coherence tempera-
ture. This feature resembles a plateau smeared by tempera-
ture and we have verified that it sharpens as the temperature
is lowered. Moreover, the apparent height of the plateau is
consistent with the predicted magnetization value. An analy-
sis of the evolution of the spectral functions with an applied
field shows that the end points of the plateau do coincide
with the chemical potential entering and leaving the hybrid-
ization gap.

II. MODEL AND METHODS

We consider the Kondo lattice model !KLM" on a square
lattice in an external magnetic field B,

H = H0 + J#
i

Si
c · Si

f ,

H0 = #
k,s

!#k − $"ck,s
† ck,s − g$BB#

i
!Si,z

c + Si,z
f " . !1"

Here, ck,s
† creates a conduction electron in an extended or-

bital with a wave vector k and a spin projection s= ↑ ,↓
along an axis of quantization chosen parallel to the applied
field. The tight-binding dispersion relation is #k=−2t!cos kx
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!ck
† fk

† "#!k − "c −
1
2

g"BB#z − V

− V − " f −
1
2

g"BB#z
$%ck

fk
& .

!11"

In the usual way, the hybridization between c electrons and
the dispersionless band of f electrons leads to a renormal-
ized, quasiparticle dispersion,

Ek,s
$ =

1
2

'!k − sg"BB $ (!!k − b"2 + 4V2) . !12"

The superscript is a band index; the subscript s= $1 labels
the spin projection. The occupation of the quasiparticle
states is set by the Fermi function f!Ek,s

$ −"", where
"= 1

2 !"c+" f" is the chemical potential of the fully interact-
ing system.

One can then define a shifted quasiparticle DOS9,10

%!&"=%c!&"+% f!&" such that

%c!&" = %0!& − V2/& + b" , !13"

and % f!&"= !V2 /&2"%c!&". Here, %0!&"= 1
N*k'!&−!k" is the

bare DOS, b="c−" f is the chemical energy for transmuting
the c- and f-electron character of a particle, and V is
a hybridization energy self-consistently determined via
V+J*s,ck,s

† fk,s-. The spectral weight vanishes outside the
lower '&1 ,&2) and upper '&3 ,&4) hybridized bands,
where &i !i=1,2 ,3 ,4" denote the four ordered roots of
$4t=&−V2 /&+b.

The mean-field equations can be compactly written as

*
s
.

I
d&%c!&"f!& − " f ,s"/ 1

V2/&2

− J/2&
0 = /nc

1

1
0 , !14"

where the integral is taken over the disjoint interval
I= '&1 ,&2)! '&3 ,&4) and " f ,s is a shorthand for
" f $g"BB /2. The first two equations fix the c- and
f-electron occupation !to nc and 1, respectively", and the
third enforces the self-consistency condition on V. We have
written J=const(J to allow for the fact that different mean-
field decompositions lead to a different numerical prefactor.
In each spin channel, 2)=&3−&2 is the smallest indirect gap
and 2V is the threshold for optical excitations.20,21 Figure 1
illustrates the zero-temperature, zero–magnetic field solution
appropriate for band filling 0*nc*1. An additional energy
scale +t=&2−" f, which represents the headroom at the top of
the lower band, is indicated.

An artifact of the mean-field treatment is that the hybrid-
ization matrix element has an anomalous expectation value
that vanishes with heating at a second-order phase transition.
!The true Kondo physics is that of a crossover." There is a
critical temperature Tc such that as T→Tc from below,
V ," f →0 and b→"c. As the quasiparticles disintegrate into
their separate c- and f-character constituents, the correspond-
ing densities of states return to their free values:
%c!&"→%0!&+"c" and % f!&"→'!&". In this limit, Eq. !14"
reduces to

2
J

= .
−4t

4t

d&1%0!&"
tanh'!& − "c"/2Tc)

& − "c
−

%0!&" − %0!"c"
& − "c

2
− %0!"c"log

4t − "c

4t + "c
, !15"

where "c!nc" takes its noninteracting value, which is implic-
itly determined by

2.
−4t

4t

%0!&"f!& − "c" = nc. !16"

The critical temperature scales as Tc+,W, where the
constant of proportionality is a function of the band filling
alone. !For a flat DOS, Tc=0.567nc,W." The small param-
eter ,=e−1/J%0!"c" renormalizes the bandwidth down to the
Kondo scale; hence, it is natural to identify a Kondo tem-
perature TK3Tc. On the square lattice, the value of TK is
always nonzero for nc-0. TK is compared to the important
zero-temperature energy scales in the upper panel of Fig. 2.
A value J / t=1.631 was chosen so that 4!M /!B4B=0=%!" f"
matches the DMFT results for J / t=1.6 and nc=0.85. !We set
g"B=1 for the remainder of this section."

At zero temperature, where the hybridization is at its
strongest, the Fermi function in Eq. !14" cuts off the
integration at " f ,s. There are three possibilities:19 !I" &1
*" f ,s*&2, !II" &1*" f ,↓*&2 and &2*" f ,↑*&3, and !III"
&1*" f ,↓*&2 and &3*" f ,↑*&4. In cases I and III, both
spin up and spin down quasiparticles have a Fermi surface.
In case II, the chemical potential lies in the spin up hybrid-
ization gap. As a consequence, the upper limit of integration
in the spin up channel is &2, and " f ,↑ no longer enters the
equations. The magnetic field only indirectly enters through

0

-2

2

4

6

(π,π)

ρc(ω+µf)

(π,π)(π,0) (0,0)

2V2∆

Ek – µ

2∆
εt

J= 0 J≠ 0

+

Ek – µ
–

FIG. 1. The upper and lower hybridized bands Ek
$ are plotted

over a trajectory bounding one octant of the Brillouin zone. The
gray line width is proportional to the c-electron spectral weight. The
indirect gap 2) and the optical gap 2V are indicated. The corre-
sponding c-electron density of states %c!&" is plotted to the right on
the same energy scale. In the magnification, the region around the
gap is illustrated with the filled Fermi sea shaded in gray, revealing
a small amount of headroom +t.2) in the lower band. In the lower
two panels, the small, noninteracting Fermi surface is contrasted to
the large interacting one.
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Heavy fermion phase paramagnetic  ground  state  is
adiabatically  connected  to the U=0 limit !   

From P. Coleman
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the dispersionless band of f electrons leads to a renormal-
ized, quasiparticle dispersion,

Ek,s
$ =
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'!k − sg"BB $ (!!k − b"2 + 4V2) . !12"

The superscript is a band index; the subscript s= $1 labels
the spin projection. The occupation of the quasiparticle
states is set by the Fermi function f!Ek,s

$ −"", where
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2 !"c+" f" is the chemical potential of the fully interact-
ing system.
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written J=const(J to allow for the fact that different mean-
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appropriate for band filling 0*nc*1. An additional energy
scale +t=&2−" f, which represents the headroom at the top of
the lower band, is indicated.
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always nonzero for nc-0. TK is compared to the important
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g"B=1 for the remainder of this section."
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gray line width is proportional to the c-electron spectral weight. The
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gap is illustrated with the filled Fermi sea shaded in gray, revealing
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the large interacting one.
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Freeze out  charge  fluctuations on  the d-orbitals. Schrieffer- Wolff, Phys. Rev. 149, 491,  (1966).

What  happens  to  the  Luttinger count?    

Count the  number of  conduction and    number  of   composite  fermions 
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The Kondo model

From P. Coleman

Competing interactions, origin of quantum criticality.    

<latexit sha1_base64="4ww0XgywrYLLSmCYGMq/pWMwsUk="></latexit>

SRKKY(n) =
J2
k

8

Z
d⌧d⌧ 0

X

r,r0

nr(⌧)�
0(r � r0, ⌧ � ⌧ 0)nr0(⌧ 0)

Heavy fermion: d-electrons  (composite-fermions) are delocalized  

As U increases  (Jk-decreases) d-electrons localize and favor 

magnetic states. 



Dimensional mismatch Kondo systems

Fakher F. Assaad, Hong-Kong, November 19th 2025

Heavy fermion phase        (metal, impurities spins              participate in Luttinger volume) 

Kondo breakdown phase  (metal, impurities spins do not participate in Luttinger volume)

Magnetic ordering in metallic environment

Dimensional mismatch Kondo system 

Provide a realization of:

                  

And can be solved without the encountering the negative sign problem in quantum Monte Carlo 
simulations
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Experimental realization of dimensional mismatch Kondo systems.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Figure 4 | Spin-polarized spectroscopy. a,b, Schematics showing allowed
spin excitations in the case of a fully polarized (in the spin-down direction,
see Supplementary Fig. 4) STM tip for negative and positive sample
voltages, respectively. c, Spin-polarized IETS spectra taken in a 3 T
transverse field on an N=7 chain (blue curves). Corresponding spectra
taken with an unpolarized tip are shown in grey. d, Same as c, but in a 7 T
transverse field. Here the unpolarized data (dotted grey lines) were taken
on a di�erent, but identical chain.

reveal the positions within each chain which are a�ected most by
each of the ground state crossings; these findings are supported by
local magnetization calculations along the field direction (Fig. 3b
and Supplementary Fig. 2).

For longer chains, the positions of the gap closings in the
IETS data deviate slightly from the calculated values, although
qualitatively the observed data evolve as expected. A possible
explanation for this discrepancy is the presence of long-range
interactions: including an additional ferromagnetic next-nearest
neighbour coupling of 0.05J gives a better agreement with the
data even in longer chains (see Supplementary Fig. 3). However,
we believe that a number of other e�ects may contribute to
the discrepancy as well; a full resolution of the mismatch would
necessitate an extensive study of both the electronic and magnetic
properties of the substrate and the adatoms.

On atoms in the bulk of the chain (two or more sites away
from an edge), a continuous featureless region is observed between
3 T and 6T, which widens as chain length increases. In this field
range, ground state crossings become too close to be individually
resolved. The energy di�erence between the ground state and the
zero mode also decreases, such that their thermal occupations
become comparable. This further reduces the ability to resolve
the crossings.

A simplified picture in terms of spin-1/2 product states and spin
flip operations8 provides a qualitative understanding of the IETS
spectra. In even chains, for small fields, the two Néel orderings
are equally mixed in the ground state. Here the first crossing is
predominantly found on the outer atoms, because at this crossing
the number of domain walls n increases by 1 only. In odd-length
chains, themagnetic field selects one of these Néel states leading to a
definite staggered magnetization profile: flipping the spin of an odd
(even) atom points it against (along) the magnetic field, leading to a
state increasing (decreasing) in energywith increasing field. At fields

above the critical field, the ground state is essentially polarized and
we can obtain a similar understanding in terms of magnon physics.

The semiclassical reasoning outlined above is further confirmed
bymeasurements taken on a seven-atom chainwith a spin-polarized
(SP) STM tip, shown in Fig. 4. In contrast to SP-STMmeasurements
taken at a fixed voltage, these spectra reveal spin contrast in energy-
dependent phenomena such as spin excitations. At 3 T we see, in
addition to the even–odd pattern in the excitation energies, an alter-
nating pattern in spin excitation intensities8 (Fig. 4c). For positive
sample bias, in which case an excess of spin-down electrons from
the tip is injected into the chain (Supplementary Fig. 4), excitations
on odd-site spins are enhanced. At negative voltage, excitations are
enhanced on the even sites. This alternating pattern is found to
disappear as the field is swept through the critical value (Fig. 4d).
Additional SP-STM data are shown in Supplementary Fig. 5.

In conclusion, we have built chains of e�ective S= 1/2 spins
realizing the XXZmodel in a transverse field, and obtained detailed
site-resolved information about the spectrum as a function of
chain length and applied field. Increasing the chain length shows
a growing number of ground state crossings, a precursor of the Ising
quantum phase transition occurring in the thermodynamic limit.
The origin of the discrepancy between the theoretical positions
of ground state crossings and those observed in longer chains
remains an open issue that requires a better understanding of the
electronic andmagnetic structure of the chains and their supporting
surface. Our work demonstrates that STM-built spin lattices o�er a
viable platform, complementary to, for example, ultracold atoms, for
experimentally testing quantum magnetism with local precision.

Methods
Methods and any associated references are available in the online
version of the paper.
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local magnetization calculations along the field direction (Fig. 3b
and Supplementary Fig. 2).

For longer chains, the positions of the gap closings in the
IETS data deviate slightly from the calculated values, although
qualitatively the observed data evolve as expected. A possible
explanation for this discrepancy is the presence of long-range
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neighbour coupling of 0.05J gives a better agreement with the
data even in longer chains (see Supplementary Fig. 3). However,
we believe that a number of other e�ects may contribute to
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necessitate an extensive study of both the electronic and magnetic
properties of the substrate and the adatoms.

On atoms in the bulk of the chain (two or more sites away
from an edge), a continuous featureless region is observed between
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range, ground state crossings become too close to be individually
resolved. The energy di�erence between the ground state and the
zero mode also decreases, such that their thermal occupations
become comparable. This further reduces the ability to resolve
the crossings.

A simplified picture in terms of spin-1/2 product states and spin
flip operations8 provides a qualitative understanding of the IETS
spectra. In even chains, for small fields, the two Néel orderings
are equally mixed in the ground state. Here the first crossing is
predominantly found on the outer atoms, because at this crossing
the number of domain walls n increases by 1 only. In odd-length
chains, themagnetic field selects one of these Néel states leading to a
definite staggered magnetization profile: flipping the spin of an odd
(even) atom points it against (along) the magnetic field, leading to a
state increasing (decreasing) in energywith increasing field. At fields

above the critical field, the ground state is essentially polarized and
we can obtain a similar understanding in terms of magnon physics.

The semiclassical reasoning outlined above is further confirmed
bymeasurements taken on a seven-atom chainwith a spin-polarized
(SP) STM tip, shown in Fig. 4. In contrast to SP-STMmeasurements
taken at a fixed voltage, these spectra reveal spin contrast in energy-
dependent phenomena such as spin excitations. At 3 T we see, in
addition to the even–odd pattern in the excitation energies, an alter-
nating pattern in spin excitation intensities8 (Fig. 4c). For positive
sample bias, in which case an excess of spin-down electrons from
the tip is injected into the chain (Supplementary Fig. 4), excitations
on odd-site spins are enhanced. At negative voltage, excitations are
enhanced on the even sites. This alternating pattern is found to
disappear as the field is swept through the critical value (Fig. 4d).
Additional SP-STM data are shown in Supplementary Fig. 5.

In conclusion, we have built chains of e�ective S= 1/2 spins
realizing the XXZmodel in a transverse field, and obtained detailed
site-resolved information about the spectrum as a function of
chain length and applied field. Increasing the chain length shows
a growing number of ground state crossings, a precursor of the Ising
quantum phase transition occurring in the thermodynamic limit.
The origin of the discrepancy between the theoretical positions
of ground state crossings and those observed in longer chains
remains an open issue that requires a better understanding of the
electronic andmagnetic structure of the chains and their supporting
surface. Our work demonstrates that STM-built spin lattices o�er a
viable platform, complementary to, for example, ultracold atoms, for
experimentally testing quantum magnetism with local precision.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Figure 4 | Spin-polarized spectroscopy. a,b, Schematics showing allowed
spin excitations in the case of a fully polarized (in the spin-down direction,
see Supplementary Fig. 4) STM tip for negative and positive sample
voltages, respectively. c, Spin-polarized IETS spectra taken in a 3 T
transverse field on an N=7 chain (blue curves). Corresponding spectra
taken with an unpolarized tip are shown in grey. d, Same as c, but in a 7 T
transverse field. Here the unpolarized data (dotted grey lines) were taken
on a di�erent, but identical chain.

reveal the positions within each chain which are a�ected most by
each of the ground state crossings; these findings are supported by
local magnetization calculations along the field direction (Fig. 3b
and Supplementary Fig. 2).

For longer chains, the positions of the gap closings in the
IETS data deviate slightly from the calculated values, although
qualitatively the observed data evolve as expected. A possible
explanation for this discrepancy is the presence of long-range
interactions: including an additional ferromagnetic next-nearest
neighbour coupling of 0.05J gives a better agreement with the
data even in longer chains (see Supplementary Fig. 3). However,
we believe that a number of other e�ects may contribute to
the discrepancy as well; a full resolution of the mismatch would
necessitate an extensive study of both the electronic and magnetic
properties of the substrate and the adatoms.

On atoms in the bulk of the chain (two or more sites away
from an edge), a continuous featureless region is observed between
3 T and 6T, which widens as chain length increases. In this field
range, ground state crossings become too close to be individually
resolved. The energy di�erence between the ground state and the
zero mode also decreases, such that their thermal occupations
become comparable. This further reduces the ability to resolve
the crossings.

A simplified picture in terms of spin-1/2 product states and spin
flip operations8 provides a qualitative understanding of the IETS
spectra. In even chains, for small fields, the two Néel orderings
are equally mixed in the ground state. Here the first crossing is
predominantly found on the outer atoms, because at this crossing
the number of domain walls n increases by 1 only. In odd-length
chains, themagnetic field selects one of these Néel states leading to a
definite staggered magnetization profile: flipping the spin of an odd
(even) atom points it against (along) the magnetic field, leading to a
state increasing (decreasing) in energywith increasing field. At fields

above the critical field, the ground state is essentially polarized and
we can obtain a similar understanding in terms of magnon physics.

The semiclassical reasoning outlined above is further confirmed
bymeasurements taken on a seven-atom chainwith a spin-polarized
(SP) STM tip, shown in Fig. 4. In contrast to SP-STMmeasurements
taken at a fixed voltage, these spectra reveal spin contrast in energy-
dependent phenomena such as spin excitations. At 3 T we see, in
addition to the even–odd pattern in the excitation energies, an alter-
nating pattern in spin excitation intensities8 (Fig. 4c). For positive
sample bias, in which case an excess of spin-down electrons from
the tip is injected into the chain (Supplementary Fig. 4), excitations
on odd-site spins are enhanced. At negative voltage, excitations are
enhanced on the even sites. This alternating pattern is found to
disappear as the field is swept through the critical value (Fig. 4d).
Additional SP-STM data are shown in Supplementary Fig. 5.

In conclusion, we have built chains of e�ective S= 1/2 spins
realizing the XXZmodel in a transverse field, and obtained detailed
site-resolved information about the spectrum as a function of
chain length and applied field. Increasing the chain length shows
a growing number of ground state crossings, a precursor of the Ising
quantum phase transition occurring in the thermodynamic limit.
The origin of the discrepancy between the theoretical positions
of ground state crossings and those observed in longer chains
remains an open issue that requires a better understanding of the
electronic andmagnetic structure of the chains and their supporting
surface. Our work demonstrates that STM-built spin lattices o�er a
viable platform, complementary to, for example, ultracold atoms, for
experimentally testing quantum magnetism with local precision.

Methods
Methods and any associated references are available in the online
version of the paper.
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transverse field. Here the unpolarized data (dotted grey lines) were taken
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reveal the positions within each chain which are a�ected most by
each of the ground state crossings; these findings are supported by
local magnetization calculations along the field direction (Fig. 3b
and Supplementary Fig. 2).

For longer chains, the positions of the gap closings in the
IETS data deviate slightly from the calculated values, although
qualitatively the observed data evolve as expected. A possible
explanation for this discrepancy is the presence of long-range
interactions: including an additional ferromagnetic next-nearest
neighbour coupling of 0.05J gives a better agreement with the
data even in longer chains (see Supplementary Fig. 3). However,
we believe that a number of other e�ects may contribute to
the discrepancy as well; a full resolution of the mismatch would
necessitate an extensive study of both the electronic and magnetic
properties of the substrate and the adatoms.

On atoms in the bulk of the chain (two or more sites away
from an edge), a continuous featureless region is observed between
3 T and 6T, which widens as chain length increases. In this field
range, ground state crossings become too close to be individually
resolved. The energy di�erence between the ground state and the
zero mode also decreases, such that their thermal occupations
become comparable. This further reduces the ability to resolve
the crossings.

A simplified picture in terms of spin-1/2 product states and spin
flip operations8 provides a qualitative understanding of the IETS
spectra. In even chains, for small fields, the two Néel orderings
are equally mixed in the ground state. Here the first crossing is
predominantly found on the outer atoms, because at this crossing
the number of domain walls n increases by 1 only. In odd-length
chains, themagnetic field selects one of these Néel states leading to a
definite staggered magnetization profile: flipping the spin of an odd
(even) atom points it against (along) the magnetic field, leading to a
state increasing (decreasing) in energywith increasing field. At fields

above the critical field, the ground state is essentially polarized and
we can obtain a similar understanding in terms of magnon physics.

The semiclassical reasoning outlined above is further confirmed
bymeasurements taken on a seven-atom chainwith a spin-polarized
(SP) STM tip, shown in Fig. 4. In contrast to SP-STMmeasurements
taken at a fixed voltage, these spectra reveal spin contrast in energy-
dependent phenomena such as spin excitations. At 3 T we see, in
addition to the even–odd pattern in the excitation energies, an alter-
nating pattern in spin excitation intensities8 (Fig. 4c). For positive
sample bias, in which case an excess of spin-down electrons from
the tip is injected into the chain (Supplementary Fig. 4), excitations
on odd-site spins are enhanced. At negative voltage, excitations are
enhanced on the even sites. This alternating pattern is found to
disappear as the field is swept through the critical value (Fig. 4d).
Additional SP-STM data are shown in Supplementary Fig. 5.

In conclusion, we have built chains of e�ective S= 1/2 spins
realizing the XXZmodel in a transverse field, and obtained detailed
site-resolved information about the spectrum as a function of
chain length and applied field. Increasing the chain length shows
a growing number of ground state crossings, a precursor of the Ising
quantum phase transition occurring in the thermodynamic limit.
The origin of the discrepancy between the theoretical positions
of ground state crossings and those observed in longer chains
remains an open issue that requires a better understanding of the
electronic andmagnetic structure of the chains and their supporting
surface. Our work demonstrates that STM-built spin lattices o�er a
viable platform, complementary to, for example, ultracold atoms, for
experimentally testing quantum magnetism with local precision.
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data of Ref. [11]. For a particle-hole symmetric conduc-
tion band, our model can be simulated with the auxiliary
field quantum Monte Carlo (QMC) algorithm without en-
countering the negative sign problem. We have used the
finite temperature algorithm13–15 of the ALF-project16

and followed Refs. [17 and 18] for the implementation of
our Kondo model. In the QMC calculation we consider
a 20 ⇥ 20 square lattice with unit lattice constant and
hopping matrix element t and consider a linear arrange-
ment of magnetic adatoms at distance �l = (0, 3) or
�l = (3, 2) from each other (up to L = 7). To overcome
the finite size e↵ects we included an orbital magnetic field
corresponding to a single flux quantum traversing the
whole lattice19, and a rather large value of the Kondo
interaction Jk/t = 2 so as to ensure that the Kondo scale
of the single impurity problem remains larger than the
finite size level spacing of the conduction electrons. Fi-
nally we consider Jh/t = 1.8.

In the case of a single adatom (L = 1), the problem
reduces to that of a single impurity. The low tempera-
ture STM signal observed in Ref. [11] consists of a sin-
gle peak, the Kondo resonance, consistent with a tun-
neling process from sample to tip that goes through the
localized d-orbital of the Co adatoms. To account for
this in the realm of the Kondo model we compute co-
tunneling processes20–22 given by: Al(!) = �ImG

ret
l (!)

with G
ret
l (!) = �i

R1
0 d⌧e

i!⌧
P
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l,�(0)
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and d̃
†
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†
l,��
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�

l + �ĉ
†
l,�Ŝ

z

l . Here � = ± runs over

the two spin polarization and Ŝ
±
l = Ŝ

x

l ± iŜ
y

l . This form
can be obtained by starting from the single impurity An-
derson model and applying the canonical Schrie↵er-Wolf
transformation (see supplemental material of Ref. [23])
and agrees with the expression given in Ref. [24].

Let us start by showing examples of spectral functions
at level crossings obtained from QMC by stochastic an-
alytic continuation25. As apparent from Fig. 1a), for a
single impurity we observe the characteristic temperature
dependence of a Kondo resonance at zero field. Fig. 1

0.0

0.4

0.8

1.2

1.6

T/Tk~0.6

e) L=4
gµBh

z
 ∆1

0,1

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6

�

f) L=4
gµBh

z
 ∆2

1,2

T/Tk~0.6

0.0

0.4

0.8

1.2

1.6
c)
gµBh

z
 0

L=3

T/Tk~0.6

0.0
1.0
2.0
3.0
4.0
5.0 Jk/t=1.5

A(
�)

a) T/Tk~3.6
T/Tk~2.9

T/Tk~1.4
T/Tk~0.9
T/Tk~0.7

T/Tk~1.9
gµBh

z
 0

L=1

Tk/t~0.07

-8 -6 -4 -2 0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5 d)

�

L=3
gµBh

z
 ∆2

1/2,3/2

T/Tk~0.8

-8 -6 -4 -2 0 2 4 6 8
0.0

0.5

1.0

1.5

2.0 L=2
gµBh

z
 ∆1

0,1
b)

T/Tk~0.7

�

A(
�)

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6
Atom2
Atom3

�

f)

Jh/t=1.8
Jk/t=2

L=4
gµBh

z
 ∆2

1,2

T/Tk~0.5

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6 Atom1
Atom4

�

T/Tk~0.5
Jk/t=2
Jh/t=1.8

e) L=4
gµBh

z
 ∆1

0,1

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6
Atom2
Atom3

�

f)

Jh/t=1.8
Jk/t=2

L=4
gµBh

z
 ∆2

1,2

T/Tk~0.5

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6 Atom1
Atom4

�

T/Tk~0.5
Jk/t=2
Jh/t=1.8

e) L=4
gµBh

z
 ∆1

0,1

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6
Atom2
Atom3

�

f)

Jh/t=1.8
Jk/t=2

L=4
gµBh

z
 ∆2

1,2

T/Tk~0.5

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6
Atom2
Atom3

�

f)

Jh/t=1.8
Jk/t=2

L=4
gµBh

z
 ∆2

1,2

T/Tk~0.5

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6
Atom2
Atom3

�

f)

Jh/t=1.8
Jk/t=2

L=4
gµBh

z
 ∆2

1,2

T/Tk~0.5

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6 Atom1
Atom4

�

T/Tk~0.5
Jk/t=2
Jh/t=1.8

e) L=4
gµBh

z
 ∆1

0,1

Tk/t~0.35

-8 -6 -4 -2 0 2 4 6 8
0.0

0.4

0.8

1.2

1.6 Atom1
Atom4

�

T/Tk~0.5
Jk/t=2
Jh/t=1.8

e) L=4
gµBh

z
 ∆1

0,1

Tk/t~0.35

FIG. 1. The spectral function computed using stochastic an-
alytical continuation algorithm25 at a given level crossings up
to L = 4. For L > 1 we choose Jh/t = 1.8 and Jk/t = 2. The
corresponding Kondo scale is extracted in Fig. 3.

also shows the magnetic field induced Kondo resonances.
For the two site chain there is a single level crossing be-
tween the singlet and the triplet at gµBh

z = �0,1
1 . In the

generic Kondo problem, time reversal symmetry protects
the two-fold degeneracy of the impurity state. Here par-
ity protects the level crossings and a Kondo resonance
is apparent on both adatom sites, see Fig. 1b). For the
three site chain two level crossings occur before satura-
tion. The ground state is a spin-1/2 doublet in zero field
and resonances are seen on the first and third adatoms,
see Fig. 1c). At the second level crossing, the resonance is
seen only on the central adatom, see Fig. 1d). For L = 4,
Kondo resonances emerge on outer adatoms at the first
level crossing, see Fig.1e), and on the central adatoms for
the second level crossing, see Fig. 1.f).

These results have been obtained at temperatures al-
ready representative of the low temperature regime, and
they reproduce the main features of the experimental
results (see Supplemental Material, Ref. [26], Fig. 12).
However, to make a quantitative comparison with the
experiments, which correspond to much lower temper-
ature, we will concentrate on the zero bias di↵erential
conductance measured in the STM experiment10–12 as
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l,�(0)i is the imaginary time
Green function which can be directly computed in the
auxiliary field QMC. This approach avoids analytical
continuation and our discussion will be based on the field
dependence of this quantity. In the zero temperature
limit the above equation is exact, and a more precise ac-
count of the zero bias di↵erential conductance at finite
temperature without using the analytical continuation
can be obtained following Refs. [27–29].

The QMC results of the local spectral function at zero
frequency for kBT/t = 1/30 are compared to the zero
bias conductance reported in Ref. [11] as a function of
external magnetic field in Fig. 2. Noticeably, up to four
atoms the zero frequency spectral function shows excel-
lent agreement with the corresponding zero bias con-
ductance measured in the experiment. The tempera-
ture scales in the QMC and STM are comparable: the
data presented in Fig. 2 are computed below kBT
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/8t,

where T
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k
is an estimate of Kondo temperature from scal-

ing of local spin susceptibility19,30 at each level crossings
(see below), while the STM data are taken at 330 mK
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/8 (kBT/t ⇠ 1/35 in QMC).

To associate an adatom dependent Kondo tempera-
ture to each level crossing, we compute the local trans-

verse susceptibility, �l =
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data of Ref. [11]. For a particle-hole symmetric conduc-
tion band, our model can be simulated with the auxiliary
field quantum Monte Carlo (QMC) algorithm without en-
countering the negative sign problem. We have used the
finite temperature algorithm13–15 of the ALF-project16

and followed Refs. [17 and 18] for the implementation of
our Kondo model. In the QMC calculation we consider
a 20 ⇥ 20 square lattice with unit lattice constant and
hopping matrix element t and consider a linear arrange-
ment of magnetic adatoms at distance �l = (0, 3) or
�l = (3, 2) from each other (up to L = 7). To overcome
the finite size e↵ects we included an orbital magnetic field
corresponding to a single flux quantum traversing the
whole lattice19, and a rather large value of the Kondo
interaction Jk/t = 2 so as to ensure that the Kondo scale
of the single impurity problem remains larger than the
finite size level spacing of the conduction electrons. Fi-
nally we consider Jh/t = 1.8.

In the case of a single adatom (L = 1), the problem
reduces to that of a single impurity. The low tempera-
ture STM signal observed in Ref. [11] consists of a sin-
gle peak, the Kondo resonance, consistent with a tun-
neling process from sample to tip that goes through the
localized d-orbital of the Co adatoms. To account for
this in the realm of the Kondo model we compute co-
tunneling processes20–22 given by: Al(!) = �ImG
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z

l . Here � = ± runs over

the two spin polarization and Ŝ
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l . This form
can be obtained by starting from the single impurity An-
derson model and applying the canonical Schrie↵er-Wolf
transformation (see supplemental material of Ref. [23])
and agrees with the expression given in Ref. [24].

Let us start by showing examples of spectral functions
at level crossings obtained from QMC by stochastic an-
alytic continuation25. As apparent from Fig. 1a), for a
single impurity we observe the characteristic temperature
dependence of a Kondo resonance at zero field. Fig. 1
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FIG. 1. The spectral function computed using stochastic an-
alytical continuation algorithm25 at a given level crossings up
to L = 4. For L > 1 we choose Jh/t = 1.8 and Jk/t = 2. The
corresponding Kondo scale is extracted in Fig. 3.

also shows the magnetic field induced Kondo resonances.
For the two site chain there is a single level crossing be-
tween the singlet and the triplet at gµBh

z = �0,1
1 . In the

generic Kondo problem, time reversal symmetry protects
the two-fold degeneracy of the impurity state. Here par-
ity protects the level crossings and a Kondo resonance
is apparent on both adatom sites, see Fig. 1b). For the
three site chain two level crossings occur before satura-
tion. The ground state is a spin-1/2 doublet in zero field
and resonances are seen on the first and third adatoms,
see Fig. 1c). At the second level crossing, the resonance is
seen only on the central adatom, see Fig. 1d). For L = 4,
Kondo resonances emerge on outer adatoms at the first
level crossing, see Fig.1e), and on the central adatoms for
the second level crossing, see Fig. 1.f).

These results have been obtained at temperatures al-
ready representative of the low temperature regime, and
they reproduce the main features of the experimental
results (see Supplemental Material, Ref. [26], Fig. 12).
However, to make a quantitative comparison with the
experiments, which correspond to much lower temper-
ature, we will concentrate on the zero bias di↵erential
conductance measured in the STM experiment10–12 as
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l,�(0)i is the imaginary time
Green function which can be directly computed in the
auxiliary field QMC. This approach avoids analytical
continuation and our discussion will be based on the field
dependence of this quantity. In the zero temperature
limit the above equation is exact, and a more precise ac-
count of the zero bias di↵erential conductance at finite
temperature without using the analytical continuation
can be obtained following Refs. [27–29].

The QMC results of the local spectral function at zero
frequency for kBT/t = 1/30 are compared to the zero
bias conductance reported in Ref. [11] as a function of
external magnetic field in Fig. 2. Noticeably, up to four
atoms the zero frequency spectral function shows excel-
lent agreement with the corresponding zero bias con-
ductance measured in the experiment. The tempera-
ture scales in the QMC and STM are comparable: the
data presented in Fig. 2 are computed below kBT
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Figure 3 | Experimental results on chains of one to nine atoms. a, IETS spectra from 0 T to 9 T transverse field (in 200 mT increments) obtained on each
atom of every chain up to a length of nine atoms (up to 8.6 T for N=7). Calculated lowest excitation energies are shown below each chain data set. Red
dashed lines indicate positions of expected calculated ground state crossings. Owing to normalization, scaling of individual spectra may di�er by ⇠20%
from values listed at the colour bars. b, Site-resolved transverse magnetization (hSxi) for N=5 and N=6 as calculated from the H3/2 model. Excitation
energies (red) same as in a.

To simulate the shape of the di�erential conductance spectra,
we employed a perturbative transport model17,22,29,30. Steps related
to the spectrum are found in good agreement with the data using
the S=3/2Hamiltonian (equation (1); Fig. 2c,d). Calculations using
the S=1/2 XXZ Hamiltonian (equation (2); Fig. 2e,f) show similar
agreement, except for the excitations to the mz = ±3/2 multiplet
near ±5.5mV, which are not modelled. This agreement justifies
our e�ective spin-1/2 treatment. A notable quantitative discrepancy
between theory and experiment is found near 1.5 T in the N = 6
chain. At this field value, a two-fold ground state degeneracy occurs,

resulting in a zero-bias Kondo resonance in the data, which is only
partly reproduced in the third-order perturbative analysis22,30–33.

In Fig. 3a, field-dependentmeasurements are shown for all atoms
of chains of 1 to 9 atoms, featuring a total of 2,056 IETS spectra.
Here, we focus on the±3mV range corresponding to themz =±1/2
multiplets. As chain length increases, more features become visible,
each marking a change of the ground state as the field is increased.
When comparing these to the calculated ground state crossing
positions (lower panels), we find that for chains up to length N =6
each feature lines up with one of the crossings. The IETS data also
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy

0

7.8

−7.8

V
ol

ta
ge

 (m
V

)

0.10 0.32
c

0 3 6 9
Transverse field (T)

0

7.8

−7.8

0.10 0.32
V

ol
ta

ge
 (m

V
)

dI/dV (nA mV−1) dI/dV (nA mV−1)

dI/dV (nA mV−1) dI/dV (nA mV−1)

dI/dV (nA mV−1) dI/dV (nA mV−1)

a

0

7.8

−7.8

V
ol

ta
ge

 (m
V

)

0.10 0.32
e

0

7.8

−7.8

V
ol

ta
ge

 (m
V

)
0.250.05

d

0 3 6 9
Transverse field (T)

0 3 6 9
Transverse field (T)

0 3 6 9
Transverse field (T)

0 3 6 9
Transverse field (T)

0 3 6 9
Transverse field (T)

0

7.8

−7.8

0.250.05

V
ol

ta
ge

 (m
V

)

b

0

7.8

−7.8

V
ol

ta
ge

 (m
V

)

0.250.05
f

Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.

NATURE PHYSICS | VOL 12 | JULY 2016 | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited. All rights reserved

657

NATURE PHYSICS DOI: 10.1038/NPHYS3722 LETTERS

0.72 nm

Di
�e

re
nt

ia
l c

on
du

ct
an

ce
 (a

.u
.)

Ex
cit

at
io

n 
en

er
gy

 (m
eV

)

Ex
cit

at
io

n 
en

er
gy

 (m
eV

)

Transverse field (T)

Voltage (mV)

Field

En
er

gy

±1/2

±3/2

0 T
2 T

x
y

z

Fi
el

d

a

2D

2D

0 3 6 9−3−6−9

0 3 6 9
Transverse field (T)

0 3 6 9

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

N = 8 N = 9

EG
EG

Tr
an

sv
er

se
 fi

el
d

M = 0 1 2 3 4 M = 1/2 3/2 5/2 7/2 9/2

n = 0 1 3 5 7 n = 0 2 4 6 8
Bcrit Bcrit

c

b

d

Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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To simulate the shape of the di�erential conductance spectra,
we employed a perturbative transport model17,22,29,30. Steps related
to the spectrum are found in good agreement with the data using
the S=3/2Hamiltonian (equation (1); Fig. 2c,d). Calculations using
the S=1/2 XXZ Hamiltonian (equation (2); Fig. 2e,f) show similar
agreement, except for the excitations to the mz = ±3/2 multiplet
near ±5.5mV, which are not modelled. This agreement justifies
our e�ective spin-1/2 treatment. A notable quantitative discrepancy
between theory and experiment is found near 1.5 T in the N = 6
chain. At this field value, a two-fold ground state degeneracy occurs,

resulting in a zero-bias Kondo resonance in the data, which is only
partly reproduced in the third-order perturbative analysis22,30–33.

In Fig. 3a, field-dependentmeasurements are shown for all atoms
of chains of 1 to 9 atoms, featuring a total of 2,056 IETS spectra.
Here, we focus on the±3mV range corresponding to themz =±1/2
multiplets. As chain length increases, more features become visible,
each marking a change of the ground state as the field is increased.
When comparing these to the calculated ground state crossing
positions (lower panels), we find that for chains up to length N =6
each feature lines up with one of the crossings. The IETS data also
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FIG. 11. QMC results for spectral function at ! = 0 as a function of an external magnetic field for Jk/t = 2, Jh/t = 1.8 and
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Ref. [11] along a cut on zero bias conductance data around 330 mK.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0 T and 2 T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the ±1/2 and ±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetization M and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn? = 0, uniform gi and Jz/J? ⇡ 1/8 has
a phase transition at giµBBx ⇡ 1.5J? from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn? generated by the Schrie�er–Wol� transformation
a�ects neither the qualitative features of the spectrum nor the
existence of the phase transition, e�ectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a ⇡-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0 T to 9 T, in increments of
200 mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ⇠20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2 model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T =330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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To simulate the shape of the di�erential conductance spectra,
we employed a perturbative transport model17,22,29,30. Steps related
to the spectrum are found in good agreement with the data using
the S=3/2Hamiltonian (equation (1); Fig. 2c,d). Calculations using
the S=1/2 XXZ Hamiltonian (equation (2); Fig. 2e,f) show similar
agreement, except for the excitations to the mz = ±3/2 multiplet
near ±5.5mV, which are not modelled. This agreement justifies
our e�ective spin-1/2 treatment. A notable quantitative discrepancy
between theory and experiment is found near 1.5 T in the N = 6
chain. At this field value, a two-fold ground state degeneracy occurs,

resulting in a zero-bias Kondo resonance in the data, which is only
partly reproduced in the third-order perturbative analysis22,30–33.

In Fig. 3a, field-dependentmeasurements are shown for all atoms
of chains of 1 to 9 atoms, featuring a total of 2,056 IETS spectra.
Here, we focus on the±3mV range corresponding to themz =±1/2
multiplets. As chain length increases, more features become visible,
each marking a change of the ground state as the field is increased.
When comparing these to the calculated ground state crossing
positions (lower panels), we find that for chains up to length N =6
each feature lines up with one of the crossings. The IETS data also
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FIG. 11. QMC results for spectral function at ! = 0 as a function of an external magnetic field for Jk/t = 2, Jh/t = 1.8 and
for di↵erent values of inverse temperature � = t/kBT up to L = 7. This figure is directly comparable with Fig.3 reported in
Ref. [11] along a cut on zero bias conductance data around 330 mK.
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Figure 2. Site-specific dI/dV spectra of a radical monomer, dimer, and trimer. a, STM image �í����

mV, 1 nA) of a partially planarized oligomer containing one radical unit. b, dI/dV spectra taken on the 

locations marked in a. c, dI/dV map recorded at 1 mV in the same field of view as panel a. d, DFT 

optimized structure of a monomer (top) and the corresponding simulated constant-height STM image 

(bottom). e, STM image �í70 mV, 1 nA) of an oligomer containing two radical units. f, dI/dV spectra 

taken on the locations marked in e. g, dI/dV maps recorded at í8.9 mV and 11 mV in the same field of 

view as panel e, respectively. Scale bar: 0.5 nm. h, DFT optimized structure of a trans-dimer (top) and 

the corresponding simulated constant-height STM image (bottom). i, STM image �í���mV, 100 pA) of 

a radical trimer. j, dI/dV spectra taken on the locations marked in i. k, dI/dV map taken along the green 

line in panel i, showing the absence of zero-voltage peak in the central unit of the trimer. The spectra in 

b, f, j are shifted vertically for clarity. 

 

Figure 2e shows a radical dimer. As shown in Figure 2f, the site-specific dI/dV 

spectra, whose locations are labeled with the color dots, reveal that both radicals exhibit 

a double-peak spectral feature, with one peak at í��7 mV and the other at 11.9 mV. The 

two peaks are not symmetric around zero bias, which excludes that the double-peak 

11 
 

a heavy fermion phase. Note that the different   values may stem from the 

configuration variation of the polymer chains, specifically, the different dihedral angles 

between the neighboring radicals40. DFT calculations (Figure S3) show that the singlet-

to-triplet gap varies from 7.4 meV to 15.8 meV when the dihedral angle changes from 

50q to 0q, which correspond to the range of the antiferromagnetic coupling strength. 

 
Figure 4. The schematic theoretical model and spectral functions of the composite fermion 

operator at various sites of radical chains computed using the classical analytical continuation 

algorithm. a, Schematic illustration of the theoretical model of experiment setup. The arrows represent 

the spins from the radicals, and colored regions represent the spins of conduction electrons coupled to 

the radical spins. Jk is the Kondo coupling, whereas Jh is the Heisenberg antiferromagnetic coupling 

between radical spins. b, Dimer: L=2, Jh
12=1.5. c, Trimer: L=3, Jh

12=Jh
23=1.5. d, Tetramer: L=4, 

Jh
12=Jh

34=1, Jh
23=2. e, Pentamer: L=5, Jh

12=Jh
23=Jh

34=Jh
45=1.8. All spectra are computed at  and 
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Abstract 

Heavy fermion quantum criticality is an extremely rich domain of research which 

represents a framework to understand strange metals as a consequence of a Kondo 

breakdown transition. Here we provide an experimental realization of such 

systems in terms of organic radicals on a metallic surface. The ground state of 

organic radicals is a Kramer’s doublet that can be modeled by a spin ½ degree of 
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Quantum critical point in the Kondo-Heisenberg model on the honeycomb lattice

Saeed Saremi and Patrick A. Lee
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We study the Kondo-Heisenberg model on the honeycomb lattice at half filling. Due to the vanishing of the
density of states at the fermi level, the Kondo insulator disappears at a finite Kondo coupling even in the
absence of the Heisenberg exchange. We adopt a large-N formulation of this model and use the renormalization
group machinery to study systematically the second order phase transition of the Kondo insulator !KI" to the
algebraic spin liquid !ASL". We note that neither phase breaks any physical symmetry, so that the transition is
not described by the standard Ginzburg-Landau-Wilson critical point. We find a stable Lorentz-invariant fixed
point that controls this second order phase transition. We calculate the exponent ! of the diverging length scale
near the transition. The quasiparticle weight of the conduction electron vanishes at this KI-ASL fixed point,
indicating non-Fermi-liquid behavior. The algebraic decay exponent of the staggered spin correlation is calcu-
lated at the fixed point and in the ASL phase. We find a jump in this exponent at the transition point.

DOI: 10.1103/PhysRevB.75.165110 PACS number!s": 71.27."a, 75.30.Mb, 73.43.Nq, 71.10.Hf

I. INTRODUCTION

The interplay between charge and spin degrees of free-
dom has been a focus of research in complex materials such
as cuprates and heavy fermions.1 The clearest example of
this interplay is the quantum critical point seen in many
heavy-fermion materials. At zero temperature, the heavy
Fermi liquid !HFL" phase disappears exactly at a point where
the antiferromagnetic !AF" magnetic ordering grows. Non-
Fermi-liquid behaviors are seen in the quantum critical re-
gion, i.e., the V-shaped region above this critical point.1 The
theoretical understanding of why these two seemingly differ-
ent phases, i.e., AF ordered and heavy-Fermi liquid, should
collapse at one point and a clear understanding of the non-
Fermi-liquid behaviors in the quantum critical region are
poor at the moment.

It is by now understood that the spin density wave ap-
proach to understand the quantum critical point in heavy
fermions, known as the Moriya-Hertz-Millis theory,2 only
accounts for small deviations from Fermi-liquid theory. New
theoretical approaches for understanding the quantum critical
heavy fermions are needed.

In an attempt to find an alternative for the Moriya-Hertz-
Millis theory, Senthil et al. proposed recently that the AF-
HFL transition might be controlled by an unstable spin liquid
fixed point.3,4 This picture is very similar to the Deconfined
quantum critical point in the context of the second order
phase transition between Neel and valence bond solid !VBS"
ground states.5 In that case the transition to VBS happens
due to the existence of an unstable spin liquid on the mag-
netically disordered side of the critical point. Deconfined
quantum critical points open up the possibility of second
order phase transitions between “unrelated” phases such as
AF and HFL. It also has the advantage of giving a plausible
scenario for the non-Fermi-liquid behavior seen in experi-
ments in heavy fermion materials. This view has had some
successes in explaining some of the experimental
observations.6,7 In this paper, we further explore this point of
view.

In search for a microscopic model that provides this type
of quantum critical point, we study the Kondo-Heisenberg

model on the honeycomb lattice at half filling. The heavy
fermion quantum critical point in this model is simplified. It
corresponds to a point, where both charge gap and spin gap
vanishes. This model is given by the following Hamiltonian
!JK#0,JH#0":

Ĥ = − t #
$ij%,a

!ci
a†cj

a + H.c." + JK#
i

si · Si + JH#
$ij%

Si · S j , !1"

where i and j live on the honeycomb lattice sites and a is the
spin index &↑,↓'. The si and Si denote the conduction electron
spin and the localized spin at the site i, respectively. What
makes the honeycomb lattice very interesting to study is the
fact that the Kondo gap vanishes at a finite coupling constant
even as JH→0. This is due to the fact that, in contrast to the
square lattice, the density of states of the conduction elec-
trons vanishes at the Fermi level.8

The Kondo-Heisenberg model on the honeycomb lattice
at half filling is also interesting, because it can be studied by
quantum Monte Carlo without the fermion sign problem.9,10

The present paper can be considered a prelude to such a
study. In this connection we mention the quantum Monte
Carlo study of the Kondo lattice model !JH=0" on the square
lattice by Assaad.10 He found a quantum phase transition of
the AF ordered ground state to a disordered one caused by
the Kondo exchange. The quasiparticle gap, however, did not
vanish at the transition point,11 i.e., the magnetic transition
happened inside the KI phase. This made the transition a
magnetic transition belonging to the O!3" nonlinear sigma
model universality class. Note that the nested Fermi line of
the tight-binding band provides the instability towards AF at
!$ ,$" even in the absence of the Heisenberg exchange JH. In
contrast the honeycomb lattice tight binding band has Fermi
points in the corner of the Brillouin zone called the Dirac
points. This causes the nesting to be extremely weak as com-
pared to the perfectly nested lines of the Fermi line in the
square lattice.

Next we consider different scenarios for the ground state
phase diagram of our model, where we consider varying JK
!t=1", keeping JH to be small. In the limit JK%JH, the
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   and bias free  quantum Monte Carlo simulations.     
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Dimensional mismatch Kondo: Models and QMC

<latexit sha1_base64="QFvq9DcMfZWoWq7zXd9V6C5t/tU="></latexit>
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(ĉ†i ĉj + h.c) +
Jk

2

X

r
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Partition function,                                                                                                          with,  for  
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rĉr

<latexit sha1_base64="w3YyCt/gN6mXJ00rvkBm1E5kCvo="></latexit>a0

<latexit sha1_base64="djHIjtPRVbdEIIIbphZpM7RVx3M="></latexit>

br = |br|ei'r

<latexit sha1_base64="2yQPWoVf7CU9yHSEf2KGuYC6od4="></latexit>

U ! 1

<latexit sha1_base64="+epCTXoW1P6QxvjoleybQsUi7Ok="></latexit>

S =

Z �

0
d⌧

8
<

:
2

Jh

X

b

|�b(⌧)|2 +
2

Jk

X

r

|br(⌧)|2 +
X

i,j

c†i(⌧) [@⌧�i,j � Ti,j ] cj(⌧)

+
X

r

|br(⌧)|
h
ei'r(⌧)f †

r(⌧)cr(⌧) + h.c.
i

+
X

r

f †
r(⌧) [@⌧ � ia0,r(⌧)]fr(⌧) + ia0,r(⌧) +

X

b=hr,r0i

|�b(⌧)|
h
f †
r(⌧)e

�i
R r0
r a(l,⌧)dlfr0(⌧) + h.c.

i
9
=

;

<latexit sha1_base64="e/by5+/zy5+YEA322jGXpPNDj5Y="></latexit>

�b = |�b|ei
R r0
r a·dl

<latexit sha1_base64="BL0wHcj32RHk3NPKIJlw7BcQ1c0="></latexit>

Z = Tr e��Ĥ =
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Numerical   simulations

For  our  specific  case, the  action is  real !  à No sign problem.   
(T. Sato, FFA, and T. Grover, Phys. Rev. Lett. 120 (2018), 107201)

The  integration over  the  fields  is  carried out  with Monte Carlo  importance sampling. 
R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24 (1981), 2278–2286.
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ĉ
†
x�sI

(ks)
xy ĉy�s
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ĉ
†
x�sT

(ks)
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Kinetic

Ø Block diagonal in flavors,  Nfl 
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Ø Arbitrary Bravais lattice  for d=1,2

Ø Model can be specified at minimal programming cost

Ø Fortran 2008 standard

Ø MPI implementation

Ø Global and local moves, Parallel tempering,  Langevin, HMC

Ø Projective and finite T  approaches

Ø pyALF: easy access python interface

Ø Predefined models
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Phase diagram and dynamics of the SU(N) symmetric Kondo lattice model
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In heavy-fermion systems, the competition between the local Kondo physics and intersite magnetic
fluctuations results in unconventional quantum critical phenomena which are frequently addressed within
the Kondo lattice model (KLM). Here we study this interplay in the SU(N ) symmetric generalization of the
two-dimensional half-filled KLM by quantum Monte Carlo simulations with N up to 8. While the long-range
antiferromagnetic (AF) order in SU(N ) quantum spin systems typically gives way to spin-singlet ground
states with spontaneously broken lattice symmetry, we find that the SU(N ) KLM is unique in that for each
finite N its ground-state phase diagram hosts only two phases—AF order and the Kondo-screened phase. The
absence of any intermediate phase between the N = 2 and large-N cases establishes adiabatic correspondence
between both limits and confirms that the large-N theory is a correct saddle point of the KLM fermionic path
integral and a good starting point to include quantum fluctuations. In addition, we determine the evolution of
the single-particle gap, quasiparticle residue of the doped hole at momentum (π ,π ), and spin gap across the
magnetic order-disorder transition. Our results indicate that increasing N modifies the behavior of the coherence
temperature: while it evolves smoothly across the magnetic transition at N = 2 it develops an abrupt jump—of
up to an order of magnitude—at larger but finite N . We discuss the magnetic order-disorder transition from
a quantum-field-theoretic perspective and comment on implications of our findings for the interpretation of
experiments on quantum critical heavy-fermion compounds.

DOI: 10.1103/PhysRevResearch.2.013276

I. INTRODUCTION

Nowadays, we are witnessing remarkable progress in ex-
perimental techniques and the emergence of promising plat-
forms for exploring novel aspects of quantum many-body
phenomena. One notable example of many-body physics is
the Kondo effect which arises from entanglement of the
impurity spin with surrounding conduction electrons and the
formation, below the Kondo temperature TK , of a spin singlet
ground state [1]. In fact, the role of the electron spin can be
replaced by any other quantum degree of freedom with sym-
metry protected twofold degeneracy, e.g., orbital momentum
[2] while the simultaneous presence of both a spin and an
orbital degeneracy might lead to an SU(4) symmetric Kondo
physics [3–5]. The SU(4) Kondo effect was already observed
in carbon nanotubes, quantum dots with orbitally degenerate
states, double quantum dot systems, and in a nanoscale silicon
transistor [6–11]. Under a high crystalline symmetry such as
the cubic one, there are chances for the spin-orbital-coupled
Kondo entanglement to remain also in realistic systems, e.g.,
in rare-earth compounds [12].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Furthermore, the advent of scanning tunneling microscopy
has made it possible to fabricate artificial Kondo nanostruc-
tures with atomic precision [13–21] whose properties, in par-
ticular the onset of lattice effects, have recently been a subject
of increasing theoretical attention [22–24]. Magnetic atoms
or organic molecules with orbital degeneracy deposited onto
a metallic surface provide the opportunity to realize an SU(4)
symmetric Kondo effect [25]. In addition, it is possible to
study its evolution upon increasing the number of periodically
arranged magnetic centers as in Ref. [26] where, starting from
a single iron(II) phthalocyanine molecule deposited on top of
Au(111) surface, in consecutive steps a two-dimensional
superlattice was created followed by the theoretical
analysis [27].

Yet another very active field of research with promises to
provide new insights into the SU(N ) symmetric generalization
of the Kondo effect [28–30] are quantum simulations with
alkali-earth-like atoms in optical lattices [31]. Thus far, build-
ing on theoretical proposals [32–34], subsequent experimental
studies utilizing ytterbium and strontium isotopes reported the
observation of SU(N ) symmetric spin-exchange interactions
between different orbitals with N as large as 10 [35–38]. From
a practical point of view, there are three crucial features re-
quired for the realization of the SU(N ) Kondo physics in such
setups: (i) the existence of a metastable excited state playing
together with the atomic ground state the role of orbital
degrees of freedom loaded into an orbital state-dependent op-
tical lattice [38], (ii) a large nuclear spin I > 1/2 of fermionic

2643-1564/2020/2(1)/013276(21) 013276-1 Published by the American Physical Society
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in carbon nanotubes, quantum dots with orbitally degenerate
states, double quantum dot systems, and in a nanoscale silicon
transistor [6–11]. Under a high crystalline symmetry such as
the cubic one, there are chances for the spin-orbital-coupled
Kondo entanglement to remain also in realistic systems, e.g.,
in rare-earth compounds [12].

Published by the American Physical Society under the terms of the
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and the published article’s title, journal citation, and DOI.

Furthermore, the advent of scanning tunneling microscopy
has made it possible to fabricate artificial Kondo nanostruc-
tures with atomic precision [13–21] whose properties, in par-
ticular the onset of lattice effects, have recently been a subject
of increasing theoretical attention [22–24]. Magnetic atoms
or organic molecules with orbital degeneracy deposited onto
a metallic surface provide the opportunity to realize an SU(4)
symmetric Kondo effect [25]. In addition, it is possible to
study its evolution upon increasing the number of periodically
arranged magnetic centers as in Ref. [26] where, starting from
a single iron(II) phthalocyanine molecule deposited on top of
Au(111) surface, in consecutive steps a two-dimensional
superlattice was created followed by the theoretical
analysis [27].

Yet another very active field of research with promises to
provide new insights into the SU(N ) symmetric generalization
of the Kondo effect [28–30] are quantum simulations with
alkali-earth-like atoms in optical lattices [31]. Thus far, build-
ing on theoretical proposals [32–34], subsequent experimental
studies utilizing ytterbium and strontium isotopes reported the
observation of SU(N ) symmetric spin-exchange interactions
between different orbitals with N as large as 10 [35–38]. From
a practical point of view, there are three crucial features re-
quired for the realization of the SU(N ) Kondo physics in such
setups: (i) the existence of a metastable excited state playing
together with the atomic ground state the role of orbital
degrees of freedom loaded into an orbital state-dependent op-
tical lattice [38], (ii) a large nuclear spin I > 1/2 of fermionic

2643-1564/2020/2(1)/013276(21) 013276-1 Published by the American Physical Society
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Kondo  breakdown  transitions and phases

                                                                                 
Dissipation induced magnetic order-disorder  transitions
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II. MODEL

We propose a model of a Kondo heterostructure in which
a layer of magnetic impurities is embedded in a three-
dimensional metal as depicted in Fig. 1(a). The metallic envi-
ronment is modeled by a tight-binding Hamiltonian on a cubic
lattice of linear length ! and with translation invariance in the
G, H, and I directions. For the magnetic layer, we employ a
Heisenberg model with exchange �H on a square lattice with the
same lattice constant as that of the three-dimensional cubic lat-
tice. The two subsystems are coupled via a Kondo interaction
�K. Specifically, the Hamiltonian for this Kondo-lattice-model
heterostructure (KLM-hetero) is defined as

�̂KLM-hetero = �̂Fermi + �̂Heisenberg + �̂Kondo. (1)

Here,

�̂Heisenberg = �H

’
hi, j i

Ŷ
5

i · Ŷ
5

j (2)

describes antiferromagnetic spin-1/2 Heisenberg interactions
on nearest-neighbor bonds hi, ji of the square lattice. The
Hamiltonian of the three-dimensional metal reads

�̂Fermi = �C

’
h(i,'I ) , ( j ,'0

I )i,f
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. (3)

Here, 2̂†i,'I ,f
creates an electron with I-component of spin

f in a Wannier state centered around the lattice site (i, 'I)

of the cubic lattice, and hopping on nearest-neighbor bonds⌦
(i, 'I), ( j , '0

I
)
↵

in all three directions.
We use periodic boundary conditions, and define Bloch

states,
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†

k2 ,:I
=

1
p

!
3
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4
8 (k2 ·i+:I'I )

2̂
†

8,'I ,f
(4)

with three-dimensional crystal momentum k = (k2, :I) ⌘

(:G , :H , :I). The dispersion relation reads nk2 ,:I =
�2C (cos :G + cos :H + cos :I), and in the absence of coupling
to the magnetic plane, the three-dimensional crystal momen-
tum is conserved up to a reciprocal lattice vector. The Fermi
surface of the metal is shown in Fig. 1(b).

�̂Kondo describes the Kondo coupling between the 2 con-
duction electrons and the magnetic impurities,

�̂Kondo = �K

’
8

Ŷ
2

i,'I=0 · Ŷ
5

i , (5)

with coupling strength �K and Ŷ
2

i,'I
=

1
2

Õ
f,f

0 2̂
†

i,'I ,f
2f,f

0 2̂i,'I ,f
0 . Importantly, the two-

dimensional array of magnetic impurities couples to the layer
of conduction electrons at 'I = 0, such that :I is no longer a
good quantum number. Low-energy scattering processes then
involve states on the projected Fermi surface, obtained from
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FIG. 1. (a) Sketch of Kondo heterostructure, consisting of a two-
dimensional array of magnetic impurities (blue dots) and three-
dimensional itinerant conduction electrons, modeled by a tight-
binding Hamiltonian on a cubic lattice (yellow dots). (b) Three-
dimensional Fermi surface of conduction electrons. (c) Projected
Fermi surface. (d) Ground-state phase diagram of model in Eq. (1),
as extracted from QMC results.

the summation over all :I . Technically, the projected Fermi
surface can be defined as the support of

�
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denotes the noninteracting electronic Green’s function in the
two-dimensional reciprocal space. The projected Fermi sur-
face is depicted in Fig. 1(c).

A. Weak-coupling limit

At �K = 0, spins and conduction electrons decouple. To
set the stage, we will first discuss these degrees of freedom
separately, and then investigate how they couple perturbatively
in �K.

The spin and charge excitations of the conduction electrons
are characterized by the noninteracting susceptibility

j
0
(r � r 0, g � g

0
) ⌘

1
4
hĉ†r (g)2ĉr (g) · ĉ

†

r0 (g
0
)2ĉr0 (g

0
)i0 (8)

with ĉr = (2r ,", 2r ,#), and where the expectation value is
taken with respect to �̂Fermi. To simplify the notation, we set
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II. MODEL

We propose a model of a Kondo heterostructure in which
a layer of magnetic impurities is embedded in a three-
dimensional metal as depicted in Fig. 1(a). The metallic envi-
ronment is modeled by a tight-binding Hamiltonian on a cubic
lattice of linear length ! and with translation invariance in the
G, H, and I directions. For the magnetic layer, we employ a
Heisenberg model with exchange �H on a square lattice with the
same lattice constant as that of the three-dimensional cubic lat-
tice. The two subsystems are coupled via a Kondo interaction
�K. Specifically, the Hamiltonian for this Kondo-lattice-model
heterostructure (KLM-hetero) is defined as
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with three-dimensional crystal momentum k = (k2, :I) ⌘

(:G , :H , :I). The dispersion relation reads nk2 ,:I =
�2C (cos :G + cos :H + cos :I), and in the absence of coupling
to the magnetic plane, the three-dimensional crystal momen-
tum is conserved up to a reciprocal lattice vector. The Fermi
surface of the metal is shown in Fig. 1(b).

�̂Kondo describes the Kondo coupling between the 2 con-
duction electrons and the magnetic impurities,

�̂Kondo = �K
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dimensional array of magnetic impurities couples to the layer
of conduction electrons at 'I = 0, such that :I is no longer a
good quantum number. Low-energy scattering processes then
involve states on the projected Fermi surface, obtained from
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FIG. 1. (a) Sketch of Kondo heterostructure, consisting of a two-
dimensional array of magnetic impurities (blue dots) and three-
dimensional itinerant conduction electrons, modeled by a tight-
binding Hamiltonian on a cubic lattice (yellow dots). (b) Three-
dimensional Fermi surface of conduction electrons. (c) Projected
Fermi surface. (d) Ground-state phase diagram of model in Eq. (1),
as extracted from QMC results.
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denotes the noninteracting electronic Green’s function in the
two-dimensional reciprocal space. The projected Fermi sur-
face is depicted in Fig. 1(c).

A. Weak-coupling limit

At �K = 0, spins and conduction electrons decouple. To
set the stage, we will first discuss these degrees of freedom
separately, and then investigate how they couple perturbatively
in �K.

The spin and charge excitations of the conduction electrons
are characterized by the noninteracting susceptibility
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FIG. 7. Spin-spin correlations ⇠
5
(i � j, g) in impurity layer as

function of distance A at equal time g = 0 (left column) and imaginary
time g at equal position A = 0 (right column) for different values of
�K in the antiferromagnetic phase (top row), quantum critical regime
(center row), and paramagnetic heavy-fermion phase (bottom row),
from finite-temperature QMC, using V = !

2
/2. Dashed blue, black,

and red lines represent power-law decay functions 5 (G) ⇠ 1/G, 1/G2

and 1/G4 for reference. The red solid line at (b)(c)(e)(f) represent the
numerical fitting of the QMC data.

the host metal. That is, ⇠ 5 (i � j, g = 0) / 1/|i � j |4 in space
and ⇠ 5 (0, g) / 1/g2 in imaginary time. We understand this

from the point of view of the composite fermion operator,2

D
Ŷ
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In the paramagnetic heavy-fermion phase, the spin correlations
are well understood by considering the bubble of the above
particle-hole correlation function. In fact, in the large-# limit,
vertex contributions vanish, and as shown in Ref. [18] for the
specific case of the half-filled two-dimensional Kondo lattice
model, the large-# saddle point is adiabatically connected
to the SU(2) model. Since the f̃ i (g) operator has the same
quantum numbers as that of the electron operator, we expect it
to have the same scaling dimension.

C. Composite-fermion and conduction-electron spectral

functions

The composite-fermion spectral function is a very useful
quantity to assess the presence of Kondo screening. Let us
start with the corresponding periodic Anderson model. In this
case, Kondo breakdown corresponds to an orbital-selective
Mott transition [35], and the single-particle spectral function
of the impurity-orbital fermion operator 3̂† will show a gap.
In the limit where charge fluctuations on the impurity orbitals
are suppressed and the periodic Anderson model maps onto
the Kondo lattice model, the composite fermion is nothing
but the canonical Schrieffer-Wolff transformation of the 3̂

†

operator. Hence, Kondo breakdown corresponds to an absence
of spectral weight at the Fermi energy of the composite fermion
operator.

In Fig. 8, we present the evolution of the 2-fermion spec-
tral function �2 (k2,l) and the composite-fermion spectral
function �k (k2,l) upon varying the Kondo coupling �K. At
weak coupling, �K = 0.1 and �K = 0.5, the magnetic im-
purities exhibit long-range antiferromagnetic order. The 2-
fermion spectral function is very similar to the corresponding
mean-field result. The composite-fermion spectral function
�k (k2,l) reveals a momentum shift of Q = (c, c) with re-
spect to �2 (k2,l), see also Fig. 4(g). In addition, the intense
composite-fermion spectral weight at l ' 0 at the � point
suggests Kondo screening throughout the antiferromagnetic
phase for all �K > 0. This feature becomes clear by compar-
ing Figs. 8(f,g) with the mean-field composite-fermion spectral
function in the coexistence phase, Fig. 4(i).

As one enhances the Kondo coupling into the finite-
temperature quantum critical fan, �K = 2.50 and �K = 3.04,
we observe growing (decreasing) low-energy spectral weight
in the composite-fermion (2-electron) spectral function. Due

2 Since f̃ 8 (g ) is only defined within the path integral, f̃ 8 (g ) in the second
line of Eq. (29) corresponds to a Grassmann variable and we consider
g > 0.
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We propose a model of a Kondo heterostructure in which
a layer of magnetic impurities is embedded in a three-
dimensional metal as depicted in Fig. 1(a). The metallic envi-
ronment is modeled by a tight-binding Hamiltonian on a cubic
lattice of linear length ! and with translation invariance in the
G, H, and I directions. For the magnetic layer, we employ a
Heisenberg model with exchange �H on a square lattice with the
same lattice constant as that of the three-dimensional cubic lat-
tice. The two subsystems are coupled via a Kondo interaction
�K. Specifically, the Hamiltonian for this Kondo-lattice-model
heterostructure (KLM-hetero) is defined as
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with three-dimensional crystal momentum k = (k2, :I) ⌘

(:G , :H , :I). The dispersion relation reads nk2 ,:I =
�2C (cos :G + cos :H + cos :I), and in the absence of coupling
to the magnetic plane, the three-dimensional crystal momen-
tum is conserved up to a reciprocal lattice vector. The Fermi
surface of the metal is shown in Fig. 1(b).
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FIG. 1. (a) Sketch of Kondo heterostructure, consisting of a two-
dimensional array of magnetic impurities (blue dots) and three-
dimensional itinerant conduction electrons, modeled by a tight-
binding Hamiltonian on a cubic lattice (yellow dots). (b) Three-
dimensional Fermi surface of conduction electrons. (c) Projected
Fermi surface. (d) Ground-state phase diagram of model in Eq. (1),
as extracted from QMC results.
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�
'I
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(0)}i0 (7)

denotes the noninteracting electronic Green’s function in the
two-dimensional reciprocal space. The projected Fermi sur-
face is depicted in Fig. 1(c).

A. Weak-coupling limit

At �K = 0, spins and conduction electrons decouple. To
set the stage, we will first discuss these degrees of freedom
separately, and then investigate how they couple perturbatively
in �K.

The spin and charge excitations of the conduction electrons
are characterized by the noninteracting susceptibility

j
0
(r � r 0, g � g

0
) ⌘

1
4
hĉ†r (g)2ĉr (g) · ĉ

†

r0 (g
0
)2ĉr0 (g

0
)i0 (8)

with ĉr = (2r ,", 2r ,#), and where the expectation value is
taken with respect to �̂Fermi. To simplify the notation, we set

Spin susceptibility of  the host metal
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In the screened phase at Jk=t > 2 spinons bind and low-
energy spectral weight is depleted.
In Kondo lattices, a Kondo-breakdown transition implies

an abrupt change of the Luttinger volume. In our setup such
a notion cannot be applied since the localized spin-1=2
moments are subextensive. Nevertheless, we can consider
the spectral function of the conduction electrons that
directly couple to the localized spin-1=2 moments and
investigate how it evolves across the transition. Let
Anðk;ωÞ¼−ð1=πÞImGret

n ðk;ωÞ with Gret
n ðk;ωÞ¼−i

R∞
0 dteiωtP

σhfĉk;n;σð0Þ;ĉ
†
k;n;σðtÞgi. In the considered Landau gauge,

translation symmetry is present along the x direction and
ĉk;n;σ ¼ ð1=

ffiffiffiffi
L

p
Þ
PL

m¼1 e
ikmĉi¼ðm;nÞ;σ is the partial Fourier

transform. Figure 6 plots A0ðk;ωÞ corresponding to the
conduction electrons that couple to the Heisenberg chain.
At Jk ¼ 0 the spectral function shows a dominant ϵðkÞ ¼
2t cosðkaÞ dispersion. In the Kondo-breakdown phase and
even at relatively large values of Jk=t ¼ 1.5 we observe no
signs of hybridization with the spins. In contrast in the

Kondo-screened phase Jk=t≳ 2, a clear signature of
hybridization is apparent.
STM experiments of magnetic adatoms on metallic

surfaces, separated by an insulating buffer layer shown
in Refs. [13,14], measure tunneling between tip and
substrate occurring through the localized orbitals. In our
setup we can access this quantity by carrying out a
Schrieffer-Wolff transformation of the localized elect-
ron creation operator in the realm of the Anderson
model [20,39,40]. In particular, AlðωÞ ¼ −ImGret

l ðωÞ with
Gret

l ðωÞ ¼ −i
R∞
0 dteiωt

P
σhfc̃l;σðtÞ; c̃

†
l;σð0Þgi and c̃†l;σ ¼

ĉ†l;−σŜ
σ
l þ σĉ†l;σŜ

z
l . Here, σ ¼ % runs over the two

spin polarizations and Ŝ%l ¼ Ŝxl % iŜyl . To evaluate the
zero-bias tunneling signal we estimate Alðω ¼ 0Þ ≃ ð1=πÞ
βGlðτ ¼ β=2Þ. Figure 7 plots this quantity. Remarkably, in
the Kondo-breakdown phase, we are not able to distinguish
the signal from zero. This supports the notion that spins and
conduction electrons decouple at low energies. As Jk → ∞,
the spin binds in a singlet with the conduction electron and
the tunneling signal through the adatom drops. A more
detailed numerical analysis [41,42] of the STM signal
across the transition is certainly of great interest.
Conclusion.—We have shown that a one-dimensional

spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless propagating spinons exist, akin to an FL& phase.
Beyond the transition, Kondo screening appears and gap-
less spinons bind. The Kondo-screened phase is adiabati-
cally connected to the strong-coupling limit, where each
spin binds with a conduction electron into a spin singlet.
Larger systems will be needed to determine the critical
exponents such as the anomalous dimension of the local
moments. In addition, since the number of adatoms in
experiments is tunable [14–16], it will be very useful to
determine how many of them are needed to resolve Kondo
breakdown in an interacting spin chain.
The choice of Dirac fermions which only possess Fermi

points simplifies the problem and allows for an RG

FIG. 5. Sðk;ωÞ along spin chain as a function of energy (ω=t)
and momentum (k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a)
Jk=t ¼ 0, (b) Jk=t ¼ 1.5, (c) Jk=t ¼ 2, and (d) Jk=t ¼ 3.

FIG. 6. A0ðk;ωÞ as a function of energy (ω=t) and momentum
(k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a) Jk=t ¼ 1.5, (b)
Jk=t ¼ 2, (c) Jk=t ¼ 2.5, and (d) Jk=t ¼ 3. FIG. 7. Zero-bias tunneling through the magnetic adatom.
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FIG. 3. Equal-time spin-spin correlation function, C(r), as a
function of distance r along the spin chain on a log-log scale
for various values of Jk/t at Jh/t = 1 and Lx = Ly = L =
�. The grey dashed line corresponds to 1/r decay and the
corresponding static spin structure factors S(k) are shown in
the insets.

a partial particle-transformation, d̂†l," ! eiQ·ld̂l,", and

ĉ†l," ! �eiQ·lĉl,", and then using time reversal symme-
try to prove that the eigenvalues of the fermion matrix
occur in complex conjugate pairs. For a given system of
linear length L, the QMC simulations are performed at
an inverse temperature �(= 1/kBT ) = L and at a fix
Jh/t = 1. At L = 20 we checked that the the choice
� = 2L shows similar results as � = L. For the con-
sidered periodic boundary conditions, L = 4n + 2 corre-
sponds to open-shell configurations and is known to show
less finite-size e↵ects than L = 4n + 4 sized systems.

QMC results: Fig. 3 plots the spin-spin correlations
C(r) = 4hŜz

0 Ŝz

r
i as a function of distance r for various

values of Jk/t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
C(r) / (�1)r

p
ln r/r. The 1/r decay of the spin-spin

correlations in the Heisenberg model, is tied to SU(2)
spin symmetry. If the Kondo coupling is irrelevant, then
we expect

P
l Ŝl to remain a good quantum number of

the low-energy e↵ective theory. Thereby the asymptotic
form of the spin-spin correlations should equally follow a
(�1)r/r form. Remarkably, the data supports this point
of view up to Jk/t . 2. On the other hand, in the Kondo-
screened phase for Jk/t & 2, the equal-time correlations
decay with a power larger than unity. In this phase, we
expect the spin-spin correlations to inherit the power-law
of the Dirac fermions hŜz,c

l Ŝz,c

l+ri / 1/r4. (see Fig. S3
of Ref. [24]). The insets of Fig. 3 plot the static spin
structure factor S(k) = 1

L

P
r
e�ik·rC(r) as a function of

momentum k. Noticeably, both at Jk = 0 and Jk/t = 1.5
we observe systematic growth of S(k) at k = ⇡, reflecting
the (�1)r/r real space decay. At Jk/t = 2 we observe a
cusp feature but a saturation of S(k = ⇡) with system
size thus suggesting a power law with exponent 1 < K� <
2. Finally, in the Kondo-screened phase at Jk/t = 3,
S(k) converges to a smooth function implying K� > 2.
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FIG. 5. Dynamical spin structure factor, S(k, !), along spin
chain as a function of energy (!/t) and momentum (k) for
L = � = 44 at Jh/t = 1.

A detailed overview of the QMC data is given in Sec. IV
of Ref. [24].

To confirm the above, we have computed the spin sus-

ceptibility �(k) =
R

�

0 d⌧S(k, ⌧) with S(k, ⌧) given as:

S(k, ⌧) =
X

r

e�ik·rhSz(r, ⌧)Sz(r = 0, ⌧ = 0)i. (3)

Lorentz invariance, inherent to spin chains, renders space
and time interchangeable such that the time displaced
correlation function scales as 1/

p
r2 + (vs⌧)2 with vs the

spin velocity. Setting � = L, we hence expect �(k = ⇡)
to diverge as L. Fig. 4 (a) plots �(k = ⇡) at � = L =
4n + 2. A similar data at L = 4n + 4 can be found in
Fig. S8 of Ref. [24]. For both cases we see two phases,
one in which �(k = ⇡) scales as L and one in which it
scales to a L-independent constant. In Fig. 4 (b) we plot
1
L

@F

@Jk
= 2

3L

P
L

l=1hĉ
†
l�ĉl · Ŝli so as to inquire the nature

of the transition. The data favors a smooth curve, and
hence a continuous quantum phase transition.

We now consider the dynamical spin structure factor,
that relates to the imaginary-time correlation functions
through S(k, ⌧) = 1

⇡

R
d! e

�⌧!

1�e��! �00(k, !). To extract

S(k, !) = �
00(k,!)

1�e��! , we use the ALF-implementation of the
stochastic analytical continuation algorithm [29]. The
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Spin chain on semi-metal
B. Danu, M.  Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Composite  fermion spectral  function

In the screened phase at Jk=t > 2 spinons bind and low-
energy spectral weight is depleted.
In Kondo lattices, a Kondo-breakdown transition implies

an abrupt change of the Luttinger volume. In our setup such
a notion cannot be applied since the localized spin-1=2
moments are subextensive. Nevertheless, we can consider
the spectral function of the conduction electrons that
directly couple to the localized spin-1=2 moments and
investigate how it evolves across the transition. Let
Anðk;ωÞ¼−ð1=πÞImGret

n ðk;ωÞ with Gret
n ðk;ωÞ¼−i

R∞
0 dteiωtP

σhfĉk;n;σð0Þ;ĉ
†
k;n;σðtÞgi. In the considered Landau gauge,

translation symmetry is present along the x direction and
ĉk;n;σ ¼ ð1=

ffiffiffiffi
L

p
Þ
PL

m¼1 e
ikmĉi¼ðm;nÞ;σ is the partial Fourier

transform. Figure 6 plots A0ðk;ωÞ corresponding to the
conduction electrons that couple to the Heisenberg chain.
At Jk ¼ 0 the spectral function shows a dominant ϵðkÞ ¼
2t cosðkaÞ dispersion. In the Kondo-breakdown phase and
even at relatively large values of Jk=t ¼ 1.5 we observe no
signs of hybridization with the spins. In contrast in the

Kondo-screened phase Jk=t≳ 2, a clear signature of
hybridization is apparent.
STM experiments of magnetic adatoms on metallic

surfaces, separated by an insulating buffer layer shown
in Refs. [13,14], measure tunneling between tip and
substrate occurring through the localized orbitals. In our
setup we can access this quantity by carrying out a
Schrieffer-Wolff transformation of the localized elect-
ron creation operator in the realm of the Anderson
model [20,39,40]. In particular, AlðωÞ ¼ −ImGret

l ðωÞ with
Gret

l ðωÞ ¼ −i
R∞
0 dteiωt

P
σhfc̃l;σðtÞ; c̃

†
l;σð0Þgi and c̃†l;σ ¼

ĉ†l;−σŜ
σ
l þ σĉ†l;σŜ

z
l . Here, σ ¼ % runs over the two

spin polarizations and Ŝ%l ¼ Ŝxl % iŜyl . To evaluate the
zero-bias tunneling signal we estimate Alðω ¼ 0Þ ≃ ð1=πÞ
βGlðτ ¼ β=2Þ. Figure 7 plots this quantity. Remarkably, in
the Kondo-breakdown phase, we are not able to distinguish
the signal from zero. This supports the notion that spins and
conduction electrons decouple at low energies. As Jk → ∞,
the spin binds in a singlet with the conduction electron and
the tunneling signal through the adatom drops. A more
detailed numerical analysis [41,42] of the STM signal
across the transition is certainly of great interest.
Conclusion.—We have shown that a one-dimensional

spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless propagating spinons exist, akin to an FL& phase.
Beyond the transition, Kondo screening appears and gap-
less spinons bind. The Kondo-screened phase is adiabati-
cally connected to the strong-coupling limit, where each
spin binds with a conduction electron into a spin singlet.
Larger systems will be needed to determine the critical
exponents such as the anomalous dimension of the local
moments. In addition, since the number of adatoms in
experiments is tunable [14–16], it will be very useful to
determine how many of them are needed to resolve Kondo
breakdown in an interacting spin chain.
The choice of Dirac fermions which only possess Fermi

points simplifies the problem and allows for an RG

FIG. 5. Sðk;ωÞ along spin chain as a function of energy (ω=t)
and momentum (k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a)
Jk=t ¼ 0, (b) Jk=t ¼ 1.5, (c) Jk=t ¼ 2, and (d) Jk=t ¼ 3.

FIG. 6. A0ðk;ωÞ as a function of energy (ω=t) and momentum
(k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a) Jk=t ¼ 1.5, (b)
Jk=t ¼ 2, (c) Jk=t ¼ 2.5, and (d) Jk=t ¼ 3. FIG. 7. Zero-bias tunneling through the magnetic adatom.

PHYSICAL REVIEW LETTERS 125, 206602 (2020)

206602-4

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 0.5

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 1.0

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 1.5

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 1.9

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 2.1

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 2.3

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 2.5

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 3.0

0 �/2 �
�5.0

�2.5

0.0

2.5

5.0
L = 18, Jk = 3.5

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Figure S3: Composite fermion spectral function across the Kondo destruction transition.

The colour scale shows the fermion spectral function A(q, !), which is investigated across the

Kondo destruction transition by scanning the Kondo coupling JK. The x-axis of all plots shows

the wavevector q while the y-axis shows the frequency !. The data clearly shows the appearance

of a composite fermion quasiparticle across the Kondo destruction transition at JK ⇠ 2.
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<latexit sha1_base64="fSqEFyim6/e49oTH+zNC1R31XHs="></latexit>

A(k,!) = �ImGret(!), Gret(!) = �i

Z 1

0
dtei!t

X

�

⌦�
 ̂k,�(t),  ̂

†
k,�(0)

 ↵

F. Mazza, S. Biswas, X. Yan, A. Prokofiev, P. Steffens, Q. Si, FFA, and S. Paschen, arXiv:2403.12779 (2024).

<latexit sha1_base64="8IrTM/S/huZ+1axgEUvXBjgPHbg="></latexit>

dI dV

� � � � V
=
0

/
A
(!

=
0)



Spin chain on semi-metal
B. Danu, M.  Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Composite  fermion spectral  function

In the screened phase at Jk=t > 2 spinons bind and low-
energy spectral weight is depleted.
In Kondo lattices, a Kondo-breakdown transition implies

an abrupt change of the Luttinger volume. In our setup such
a notion cannot be applied since the localized spin-1=2
moments are subextensive. Nevertheless, we can consider
the spectral function of the conduction electrons that
directly couple to the localized spin-1=2 moments and
investigate how it evolves across the transition. Let
Anðk;ωÞ¼−ð1=πÞImGret

n ðk;ωÞ with Gret
n ðk;ωÞ¼−i

R∞
0 dteiωtP

σhfĉk;n;σð0Þ;ĉ
†
k;n;σðtÞgi. In the considered Landau gauge,

translation symmetry is present along the x direction and
ĉk;n;σ ¼ ð1=

ffiffiffiffi
L

p
Þ
PL

m¼1 e
ikmĉi¼ðm;nÞ;σ is the partial Fourier

transform. Figure 6 plots A0ðk;ωÞ corresponding to the
conduction electrons that couple to the Heisenberg chain.
At Jk ¼ 0 the spectral function shows a dominant ϵðkÞ ¼
2t cosðkaÞ dispersion. In the Kondo-breakdown phase and
even at relatively large values of Jk=t ¼ 1.5 we observe no
signs of hybridization with the spins. In contrast in the

Kondo-screened phase Jk=t≳ 2, a clear signature of
hybridization is apparent.
STM experiments of magnetic adatoms on metallic

surfaces, separated by an insulating buffer layer shown
in Refs. [13,14], measure tunneling between tip and
substrate occurring through the localized orbitals. In our
setup we can access this quantity by carrying out a
Schrieffer-Wolff transformation of the localized elect-
ron creation operator in the realm of the Anderson
model [20,39,40]. In particular, AlðωÞ ¼ −ImGret

l ðωÞ with
Gret

l ðωÞ ¼ −i
R∞
0 dteiωt

P
σhfc̃l;σðtÞ; c̃

†
l;σð0Þgi and c̃†l;σ ¼

ĉ†l;−σŜ
σ
l þ σĉ†l;σŜ

z
l . Here, σ ¼ % runs over the two

spin polarizations and Ŝ%l ¼ Ŝxl % iŜyl . To evaluate the
zero-bias tunneling signal we estimate Alðω ¼ 0Þ ≃ ð1=πÞ
βGlðτ ¼ β=2Þ. Figure 7 plots this quantity. Remarkably, in
the Kondo-breakdown phase, we are not able to distinguish
the signal from zero. This supports the notion that spins and
conduction electrons decouple at low energies. As Jk → ∞,
the spin binds in a singlet with the conduction electron and
the tunneling signal through the adatom drops. A more
detailed numerical analysis [41,42] of the STM signal
across the transition is certainly of great interest.
Conclusion.—We have shown that a one-dimensional

spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless propagating spinons exist, akin to an FL& phase.
Beyond the transition, Kondo screening appears and gap-
less spinons bind. The Kondo-screened phase is adiabati-
cally connected to the strong-coupling limit, where each
spin binds with a conduction electron into a spin singlet.
Larger systems will be needed to determine the critical
exponents such as the anomalous dimension of the local
moments. In addition, since the number of adatoms in
experiments is tunable [14–16], it will be very useful to
determine how many of them are needed to resolve Kondo
breakdown in an interacting spin chain.
The choice of Dirac fermions which only possess Fermi

points simplifies the problem and allows for an RG

FIG. 5. Sðk;ωÞ along spin chain as a function of energy (ω=t)
and momentum (k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a)
Jk=t ¼ 0, (b) Jk=t ¼ 1.5, (c) Jk=t ¼ 2, and (d) Jk=t ¼ 3.

FIG. 6. A0ðk;ωÞ as a function of energy (ω=t) and momentum
(k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a) Jk=t ¼ 1.5, (b)
Jk=t ¼ 2, (c) Jk=t ¼ 2.5, and (d) Jk=t ¼ 3. FIG. 7. Zero-bias tunneling through the magnetic adatom.
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the wavevector q while the y-axis shows the frequency !. The data clearly shows the appearance

of a composite fermion quasiparticle across the Kondo destruction transition at JK ⇠ 2.
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FIG. S5: H-cut of A (k,!), for di↵erent h.

These processes are encoded in the SU (2) Heisenberg model
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Orbital selective Mott transition. (Conduction electrons are metallic)
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FIG. S4: H-cut of S(q,!), for di↵erent h.
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For h ! 1, our model maps onto an SU (2) quantum antiferromagnetic. We again start from the h = 1 degenerate
case and consider J in second-order degenerate perturbation theory. As we mention above, hopping of a fermion

with flavor index ↵ from site i to nearest-neighbor site j leaves the rotor in an excited state associated with energy
cost h. The only way to remove this excitation is for a fermion with flavor index ↵

0 to hop back from site j to site i.
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FIG. S2: H-cut of �0(!), for di↵erent h. (MaxEnt). I agree that severe finite-size e↵ect appear, from � = 6.6

Orbital selective Mott transition. (Conduction electrons are metallic)
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Experimentally  relevant,  simple (sign free) model systems that can capture the 
physics of heavy fermion systems. 

Heavy fermion phase        (metal, impurities spin do        participate in Luttinger volume) 

Kondo breakdown phase  (metal, impurities spin do not participate in Luttinger volume)

Magnetic ordering in metallic environment
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Dissipation-Induced Order: The S = 1=2 Quantum Spin Chain Coupled to an Ohmic Bath
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We consider an S ¼ 1=2 antiferromagnetic quantum Heisenberg chain where each site is coupled to an
independent bosonic bath with ohmic dissipation. The coupling to the bath preserves the global SO(3) spin
symmetry. Using large-scale, approximation-free quantum Monte Carlo simulations, we show that any
finite coupling to the bath suffices to stabilize long-range antiferromagnetic order. This is in stark contrast
to the isolated Heisenberg chain where spontaneous breaking of the SO(3) symmetry is forbidden by the
Mermin-Wagner theorem. A linear spin-wave theory analysis confirms that the memory of the bath and the
concomitant retarded interaction stabilize the order. For the Heisenberg chain, the ohmic bath is a marginal
perturbation so that exponentially large system sizes are required to observe long-range order at small
couplings. Below this length scale, our numerics is dominated by a crossover regime where spin
correlations show different power-law behaviors in space and time. We discuss the experimental relevance
of this crossover phenomena.

DOI: 10.1103/PhysRevLett.129.056402

Introduction.—Real quantum systems are seldom iso-
lated [1,2]. The natural question to ask is if the coupling to
the environment will trigger new phenomena, and, if so, at
which energy- or timescale. This question is not only
relevant in the realm of quantum simulation or computing
where decoherence is a limiting factor [3], but also in the
solid state. A prominent example for this are experiments
on KCuF3 [4], a quasi-one-dimensional material with weak
interchain coupling. In this material, surrounding chains
can be viewed as a weakly coupled environment modifying
the behavior of the chain: At high energies, neutron-
scattering experiments are remarkably well reproduced
by the two-spinon continuum of the isolated Heisenberg
model; at low energies, the environment dominates, leading
to the binding of spinons into spin waves.
One of our motivations is to understand the physics of

chains of magnetic adatoms deposited on a metallic
substrate [5]. Starting from an effective description of
the magnetic adatoms in terms of a one-dimensional S ¼
1=2 Heisenberg chain with a Kondo-type coupling to the
substrate [6–8], one can use Hertz-Millis theory [9,10] to
integrate out the bath and obtain in second-order perturba-
tion theory a retarded interaction in space and time between

the spin degrees of freedom. This interaction is governed by
the spin susceptibility of the two-dimensional electron gas,
χ0ði − j; τ − τ0Þ, where i and j denote the positions of the
magnetic adatoms and τ, τ0 are points in imaginary time; it
has a different decay in space (quartic) and time (quadratic).
In our modeling, we will neglect the spatial decay since it is
irrelevant at the Heisenberg critical point [11] and focus on
the effect of retardation of the interaction in (imaginary)
time [14–18]. This allows us to simplify the model further
and instead of a metallic substrate we introduce indepen-
dent ohmic baths described by noninteracting bosons as in
the celebrated Caldeira-Leggett model [19], leading to the
same retarded interaction in time if the bath is integrated
out.
Spin chains in the presence of dissipation have been

considered in the absence of the Berry phase within an ϵ
expansion [20] as well as with classical Monte Carlo
methods [21]. Simulations were based on a lattice discre-
tization of the nonlinear sigma model [21], but without the
topological θ term that is relevant for half-integer spin
chains and renders them critical [22]. In the absence of the
Berry phase, these spin models account for massive phases,
so that a finite coupling to the bath is required to trigger a
phase transition from a disordered phase at weak coupling
to an ordered phase at strong coupling. This breakdown of
the Mermin-Wagner theorem [23,24] stems from the fact
that the ohmic bath induces long-ranged retarded inter-
actions. Calculations for the quantum XXZ chain with site
ohmic dissipation coupling to the z component of the spin
were carried out in Ref. [25].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 129, 056402 (2022)

0031-9007=22=129(5)=056402(6) 056402-1 Published by the American Physical Society

SSE  for retarted interactions: M. Weber, FFA , and M. Hohenadler, Phys. Rev. Lett. 119 (2017), 097401.



Spin chain on metallic  surface
M. Weber, D. J. Luitz, and FFA, Phys. Rev. Lett. 129 (2022), 056402.

10°3 10°2

1/L

0.37

0.38

0.39

0.40

0.41

R

(b)
Æ
0.2

0.25

0.3

0.35

0.4

3 4 5

1/Æ

101

102

L
c

(c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Æ

0.3

0.4

0.5

0.6

0.7

R

(a)

L
22

42

82

162

322

642

0.0 0.2 0.4
1/ ln(L)

0.0

0.2

0.4

Æ
c
(L

)
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long-ranged order    (Dissipation is  marginally   relevant)

<latexit sha1_base64="q0DuBWRjPEtPB8HBW9xEL5VaZG8="></latexit>

S(q) =
X

r

eiq·rhŜr · Ŝ0i
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is the hopping matrix element, and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is

a spinor where ĉ†i,"(#) creates an electron at site i with

z-component of spin 1/2 (�1/2). Jk is the antiferro-
magnetic Kondo coupling between spins and conduction
electrons, Jh is the antiferromagnetic Heisenberg cou-
pling, Ŝr are spin-1/2 operators and L is the length of
the chain. We consider an array of ad-atoms at an in-
teratomic spacing �r = (a, 0) with a = 1 and periodic
boundary conditions are used along the spin chain as well
as for the conduction electrons. Translation by (a, 0) is
a symmetry of the problem such that crystal momentum
k along the chain is conserved up to a reciprocal lattice
vector. This model, including the Heisenberg exchange,
is motivated by the STM work of Ref. 1.

In the absence of Kondo coupling and at Jh 6= 0, the
local moments at low-energies are described by a Lut-
tinger liquid action Schain. Denoting the fluctuating an-
tiferromagnetic (AFM) order parameter as n, in this the-
ory hn(r, ⌧) · n(0, 0)i ⇠

p
log(r2 + ⌧2)/

p
r2 + ⌧2. Here

r = |r|. When Jk 6= 0, one may proceed by integrating
out the conduction electrons and obtain an action up to
second order in Jk as S = Schain + Sdiss(n) with

Sdiss(n) =
J2
k

8

Z
d⌧d⌧ 0

X

r,r0

nr(⌧)�0(r�r0, ⌧ �⌧ 0)nr0(⌧ 0).

(2)
where �0 is the antiferromagnetic spin susceptibility of
the conduction electrons and Schain the action of the
spin chain. For generic, non-nested two-dimensional
electrons at finite density, �0(r = 0, ⌧) ⇠ 1/⌧2, while
�0(r, ⌧ = 0) ⇠ 1/r3. Using power counting, one observes
that while the long-range 1/r3 spatial decay of �0 is ir-
relevant at the Jk = 0 fixed point, the long-range 1/⌧2

decay in the time direction is not innocuous, and at the
leading order, corresponds to an dissipative Ohmic bath
that is marginal in the renormalization-group sense. In
fact, as argued in [17], such a dissipative coupling is a
marginally relevant operator that triggers long-range or-
der. To avoid the negative-sign-problem we employ a
particle-hole-symmetric conduction band such that the
Fermi surface is nested. As shown in supplemental mate-
rial [20] this leads to a multiplicative logarithmic correc-
tion to �0: �0(0, ⌧) ⇠ log2(⌧)/⌧2. Therefore, at small Jk,
the logarithmic enhancement only increases the tendency
for the system to become ordered due to dissipation. A
particularity of the nested Fermi surface is a directional
dependence of �0(r, 0) [20]. For a chain along the (a, 0)
direction �0(r, 0) ⇠ 1/r4. At Jk � Jh, t the local mo-
ments prefer to form local singlets with the conduction
electrons, thereby resulting in a paramagnetic phase.

We simulate the Hamiltonian of Eq. (1) using the
auxiliary-field quantum Monte Carlo (AFQMC) [21, 22]
implementation of the Algorithms for Lattice Fermions
(ALF) [23, 24] library. The model falls in the general cat-
egory of spin-fermion Hamiltonians [25] that do not su↵er

from the sign problem. Our simulations are based on the
finite-temperature grand-canonical AFQMC [26, 27]. To
reduce finite-size e↵ects we have included an orbital mag-
netic field of magnitude B = �0/L2 where �0 is the flux
quantum [28].
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FIG. 2. (a) First derivative of free energy as a function of
Jk/t at �t = L and Jh/t = 1. The inset plots the second
derivative of the free energy. (b) Correlation ratio R as a
function of Jk/t at �t = L2/2 and Jh/t = 1. The inset plots
R as a function of 1/L at Jk/t = 1.8 and Jk/t = 3.

QMC Results. Given the above considerations, we
anticipate an order-disorder transition as a function of
Jk. To locate it, we consider 1

L

@F

@Jk
= 2

3L

P
rhĉ

†
r�ĉr · Ŝri

as a function of Jk as well as @
2
F

@J
2
k

(Fig. 2(a) and inset). As

apparent, the data is consistent with a single transition
at Jc

k
/t ' 2.1 for Jh/t = 1. Next, we consider the spin

susceptibility,

�(k, i⌦m) =

Z
�

0
d⌧

X

r

ei(⌦m⌧�k·r)hŜz

r(⌧)Ŝz

0(0)i, (3)

from which we can define the correlation ratio,

R = 1 � �(Q� �k, 0)

�(Q, 0)
, (4)

where Q = (⇡/a, 0) corresponds to the antiferromag-
netic wave vector and �k to the smallest wave vector on
the L-site chain. This correlation ratio scales to unity
(zero) for ordered (disordered) states, and at critical-
ity, is a renormalization group invariant quantity. Here,
R = f([Jk � Jc

k
] L1/⌫ , Lz/�, L�!) where ⌫ is the correla-

tion length exponent, z is the dynamical exponent, and !
captures corrections to scaling. Figs. 4 (c) and (d) shows
that in the vicinity of the critical point spatial correla-
tions drop o↵ as 1/r whereas along the imaginary time,
we observe a much slower 1/

p
⌧ decay. This suggests

a critical exponent z ' 2. With this in mind, we can
compute R adopting a �t = L2 scaling such that un-
der the assumption vanishing correlations to scaling, R
should show a crossing point as a function of system size
at Jc

k
. As apparent from Fig. 2(b) R shows a crossing

at Jc

k
/t ' 2.1 thus providing a consistency check for our

choice of the dynamical exponent. We now discuss the
physics at weak, Jk < Jc

k
, and strong coupling, Jk > Jc

k
.

For Jk < Jc

k
, we expect-dissipation induced long-range

AFM ordering. As discussed in [20], in this phase one
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can decompose the fluctuating AFM field n as n(r, ⌧) =⇣
�(r, ⌧),

p
1 � �(r, ⌧)2

⌘
where the ordering is assumed

along the ẑ direction. The low-energy action for the
transverse fluctuations � has dynamical exponent z = 2,

and is given by S0(�) = �
2

R
d⌧d⌧

0
dr

�(r,⌧).�(r,⌧ 0)
(⌧�⌧ 0)2 +

⇢s

2

R
d⌧dr (@r�(r, ⌧))2. This implies that while the n

z

correlations are long-ranged in both space and time, the
correlations of � are given as: h�(r, ⌧) ·�(r, 0)i ⇠ 1/

p
⌧ ,

while h�(0, ⌧) · �(r, ⌧)i ⇠ 1/r.
On the numerical front, at Jk/t = 1.8 < J

c
k/t, we ob-

serve a slight increase in the correlation ratio (Fig. 2(b)
inset) thus hinting to the onset of long-range order, but
as Jk decreases further no sign of long-range order on our
finite lattice sizes is apparent. To understand this appar-
ent lack of ordering, we can switch o↵ the Kondo screen-
ing and retain only local dissipation, corresponding to
Eq. (2) with �

0(r, ⌧) / �r,0/⌧
2. For this bosonic model

stochastic series approaches for retarded interactions [?
? ] can be used to investigate this model with unprece-
dented precision [? ]. It was shown in Ref.[? ] that the
marginally relevant nature of the Ohmic dissipation at
the LL critical point requires lattice sizes L ⌧ Lc / e

⇠/J2
k

to detect long-range order.
For L . Lc one observes crossover phenomena charac-

terized by a 1/r decay of the real space spin-spin corre-
lations and breakdown of Lorentz symmetry. Our under-
standing is that our data falls in this crossover regime,
and that for r ⌧ Lc it can be accounted for by

C(r, ⌧) /

8
<

:

1p
r2+⌧2/z

⌧ ⌧ 1
�

e��⌧p
r2+��2/z

⌧ � 1
�

(5)

on an L-site lattice. Here C(r, ⌧) = e
iQ·rhŜz

r(⌧)Ŝz
0(0)i

and � /
�
2⇡
L

�z
corresponds to the finite-size gap. At

Jk/t = 0.5, far from the critical point, Fig. 4 plots C(r, 0)
(a) as well as C(0, ⌧) (b). The real-space equal-time de-
cay is consistent with a 1/r law. Along the imaginary
time we observe crossover phenomena: While at short
times, ⌧ t . L, the temporal decay is consistent with
Eq. (5) at z ' 1 akin to the Heisenberg model, we ob-
serve at large ⌧ a breakdown of Lorentz invariance with
C(0, ⌧) decaying substantially slower than 1/⌧ . In the
infinite-size limit, we foresee that both the real-space and
imaginary-time correlations will level o↵ to show long-
ranged correlations, albeit with a very small local mo-
ment.

The breakdown of Lorentz invariance is equally appar-
ent in the data of Fig. 3. The Ansatz of Eq. (5) leads a
structure factor S(Q) = 1

�

P
⌦m

�(Q, i⌦m) that is in-
dependent on the dynamical exponent and as for the
Heisenberg chain diverges as log(L). The size scaling
in the crossover regime (Fig. 3(a)) does not show marked
di↵erences from the Heisenberg limit. As noted in Ref. [?
] and seen in Fig. 3(a), coupling to the bath reduces the
magnitude of the equal time spin-correlations. On the
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FIG. 3. (a) Static spin structure factor S(Q) along the spin
chain as a function of Jk/t for given L at Jh/t = 1 and �t =
L2/2. (b) Correspondingly, spin susceptibility �(Q, 0) as a
function of Jk/t.

other hand, the susceptibility, �(Q, 0) shows marked dif-
ferences as a function of Jk. In Fig. 3(b) we consider
the scaling �t = L

2
/2. In the Heisenberg limit this leads

to �(Q, 0) / L and a marked deviation from this law is
observed in the crossover regime. For z = 2 akin to the
critical point, J

c
k/t ' 2.1, the Ansatz of Eq. (5) yields

�(Q, 0) / L
2. This scaling law is supported by the data

thus confirming z ' 2 at criticality.
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power law. (b) C(0, ⌧). The dashed grey line indicates a 1/⌧2

law. Both power laws in time and in space are observed in
the large-N limit (see Ref. [? ]).

At Jk > J
c
k we are in a Kondo screened phase that

can be understood within a large-N mean field theory
presented in Ref. [? ]. In this phase, the spin-spin cor-
relations inherit the asymptotic behavior of the conduc-
tion electrons and fall o↵ as 1/r

4 in space and as 1/⌧
2 in
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FIG. 3. (a) Static spin structure factor S(Q) along the spin
chain as a function of Jk/t for given L at Jh/t = 1 and �t =
L2/2. (b) Correspondingly, spin susceptibility �(Q, 0) as a
function of Jk/t.

other hand, the susceptibility, �(Q, 0) shows marked dif-
ferences as a function of Jk. In Fig. 3(b) we consider
the scaling �t = L
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/2. In the Heisenberg limit this leads

to �(Q, 0) / L and a marked deviation from this law is
observed in the crossover regime. For z = 2 akin to the
critical point, J
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k/t ' 2.1, the Ansatz of Eq. (5) yields

�(Q, 0) / L
2. This scaling law is supported by the data

thus confirming z ' 2 at criticality.
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power law. (b) C(0, ⌧). The dashed grey line indicates a 1/⌧2

law. Both power laws in time and in space are observed in
the large-N limit (see Ref. [? ]).

At Jk > J
c
k we are in a Kondo screened phase that

can be understood within a large-N mean field theory
presented in Ref. [? ]. In this phase, the spin-spin cor-
relations inherit the asymptotic behavior of the conduc-
tion electrons and fall o↵ as 1/r

4 in space and as 1/⌧
2 in
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Jk

2

X

r

ĉ†r�ĉr · Ŝr + Jh

X

hr,r0i

Ŝr · Ŝr0

2

is the hopping matrix element, and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is

a spinor where ĉ†i,"(#) creates an electron at site i with

z-component of spin 1/2 (�1/2). Jk is the antiferro-
magnetic Kondo coupling between spins and conduction
electrons, Jh is the antiferromagnetic Heisenberg cou-
pling, Ŝr are spin-1/2 operators and L is the length of
the chain. We consider an array of ad-atoms at an in-
teratomic spacing �r = (a, 0) with a = 1 and periodic
boundary conditions are used along the spin chain as well
as for the conduction electrons. Translation by (a, 0) is
a symmetry of the problem such that crystal momentum
k along the chain is conserved up to a reciprocal lattice
vector. This model, including the Heisenberg exchange,
is motivated by the STM work of Ref. 1.

In the absence of Kondo coupling and at Jh 6= 0, the
local moments at low-energies are described by a Lut-
tinger liquid action Schain. Denoting the fluctuating an-
tiferromagnetic (AFM) order parameter as n, in this the-
ory hn(r, ⌧) · n(0, 0)i ⇠

p
log(r2 + ⌧2)/

p
r2 + ⌧2. Here

r = |r|. When Jk 6= 0, one may proceed by integrating
out the conduction electrons and obtain an action up to
second order in Jk as S = Schain + Sdiss(n) with

Sdiss(n) =
J2
k

8

Z
d⌧d⌧ 0

X

r,r0

nr(⌧)�0(r�r0, ⌧ �⌧ 0)nr0(⌧ 0).

(2)
where �0 is the antiferromagnetic spin susceptibility of
the conduction electrons and Schain the action of the
spin chain. For generic, non-nested two-dimensional
electrons at finite density, �0(r = 0, ⌧) ⇠ 1/⌧2, while
�0(r, ⌧ = 0) ⇠ 1/r3. Using power counting, one observes
that while the long-range 1/r3 spatial decay of �0 is ir-
relevant at the Jk = 0 fixed point, the long-range 1/⌧2

decay in the time direction is not innocuous, and at the
leading order, corresponds to an dissipative Ohmic bath
that is marginal in the renormalization-group sense. In
fact, as argued in [17], such a dissipative coupling is a
marginally relevant operator that triggers long-range or-
der. To avoid the negative-sign-problem we employ a
particle-hole-symmetric conduction band such that the
Fermi surface is nested. As shown in supplemental mate-
rial [20] this leads to a multiplicative logarithmic correc-
tion to �0: �0(0, ⌧) ⇠ log2(⌧)/⌧2. Therefore, at small Jk,
the logarithmic enhancement only increases the tendency
for the system to become ordered due to dissipation. A
particularity of the nested Fermi surface is a directional
dependence of �0(r, 0) [20]. For a chain along the (a, 0)
direction �0(r, 0) ⇠ 1/r4. At Jk � Jh, t the local mo-
ments prefer to form local singlets with the conduction
electrons, thereby resulting in a paramagnetic phase.

We simulate the Hamiltonian of Eq. (1) using the
auxiliary-field quantum Monte Carlo (AFQMC) [21, 22]
implementation of the Algorithms for Lattice Fermions
(ALF) [23, 24] library. The model falls in the general cat-
egory of spin-fermion Hamiltonians [25] that do not su↵er

from the sign problem. Our simulations are based on the
finite-temperature grand-canonical AFQMC [26, 27]. To
reduce finite-size e↵ects we have included an orbital mag-
netic field of magnitude B = �0/L2 where �0 is the flux
quantum [28].
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FIG. 2. (a) First derivative of free energy as a function of
Jk/t at �t = L and Jh/t = 1. The inset plots the second
derivative of the free energy. (b) Correlation ratio R as a
function of Jk/t at �t = L2/2 and Jh/t = 1. The inset plots
R as a function of 1/L at Jk/t = 1.8 and Jk/t = 3.

QMC Results. Given the above considerations, we
anticipate an order-disorder transition as a function of
Jk. To locate it, we consider 1

L

@F

@Jk
= 2

3L

P
rhĉ

†
r�ĉr · Ŝri

as a function of Jk as well as @
2
F

@J
2
k

(Fig. 2(a) and inset). As

apparent, the data is consistent with a single transition
at Jc

k
/t ' 2.1 for Jh/t = 1. Next, we consider the spin

susceptibility,

�(k, i⌦m) =

Z
�

0
d⌧

X

r

ei(⌦m⌧�k·r)hŜz

r(⌧)Ŝz

0(0)i, (3)

from which we can define the correlation ratio,

R = 1 � �(Q� �k, 0)

�(Q, 0)
, (4)

where Q = (⇡/a, 0) corresponds to the antiferromag-
netic wave vector and �k to the smallest wave vector on
the L-site chain. This correlation ratio scales to unity
(zero) for ordered (disordered) states, and at critical-
ity, is a renormalization group invariant quantity. Here,
R = f([Jk � Jc

k
] L1/⌫ , Lz/�, L�!) where ⌫ is the correla-

tion length exponent, z is the dynamical exponent, and !
captures corrections to scaling. Figs. 4 (c) and (d) shows
that in the vicinity of the critical point spatial correla-
tions drop o↵ as 1/r whereas along the imaginary time,
we observe a much slower 1/

p
⌧ decay. This suggests

a critical exponent z ' 2. With this in mind, we can
compute R adopting a �t = L2 scaling such that un-
der the assumption vanishing correlations to scaling, R
should show a crossing point as a function of system size
at Jc

k
. As apparent from Fig. 2(b) R shows a crossing

at Jc

k
/t ' 2.1 thus providing a consistency check for our

choice of the dynamical exponent. We now discuss the
physics at weak, Jk < Jc

k
, and strong coupling, Jk > Jc

k
.

For Jk < Jc

k
, we expect-dissipation induced long-range

AFM ordering. As discussed in [20], in this phase one
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S(k,!) =
Im�(k,! + i0+)

1� e��!

4

imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.
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FIG. 6. S(k,!) as a function of energy !/t and momentum
k along the spin chain at �t = L = 44 and Jh/t = 1.

Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†

r,� = 2
P
�0 ĉ†r,�0��0,� · Ŝr [38–40]. In the

large-N limit this quantity picks up the Higgs con-
densate or hybridization matrix element [20], charac-
teristic of Kondo screening [41]. Here we compute
the spectral function A (k,!) = �ImGret
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resenting the conduction-electron T matrix. Figs. 7(a)-
(b) shows flat (i.e heavy) bands in the vicinity of the

Jk/t=2.3Jk/t=1.8(a) (b)
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FIG. 7. Spectral function of the composite-fermion operator
A (k,!) on an L = 24 lattice at �t = 48 (a) in the ordered
phase and (b) in the Kondo-screened phase. (c) Local zero-
bias signal A (! = 0) as a function of temperature T/t at
L = 44 and for various values of Jk/t in the ordered and
disordered phases.

Fermi energy, both below and above the critical point
Jc

k
/t ' 2.1. In Fig. 7(c) we plot A (!) = 1

L

P
k A (k,!)

as a function of temperature and Jk. To avoid ana-
lytical continuation, we use the relation A (! = 0) '
(1/⇡)�G (⌧ = �/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of A (! = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.
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Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†

r,� = 2
P
�0 ĉ†r,�0��0,� · Ŝr [38–40]. In the

large-N limit this quantity picks up the Higgs con-
densate or hybridization matrix element [20], charac-
teristic of Kondo screening [41]. Here we compute
the spectral function A (k,!) = �ImGret
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Fermi energy, both below and above the critical point
Jc

k
/t ' 2.1. In Fig. 7(c) we plot A (!) = 1
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as a function of temperature and Jk. To avoid ana-
lytical continuation, we use the relation A (! = 0) '
(1/⇡)�G (⌧ = �/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of A (! = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.
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Jk/t=1.8Jk/t=0(a) (b)

Jk/t=3(d)Jk/t=2
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FIG. 6. S(k,!) as a function of energy !/t and momentum
k along the spin chain at �t = L = 44 and Jh/t = 1.

Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†

r,� = 2
P
�0 ĉ†r,�0��0,� · Ŝr [38–40]. In the

large-N limit this quantity picks up the Higgs con-
densate or hybridization matrix element [20], charac-
teristic of Kondo screening [41]. Here we compute
the spectral function A (k,!) = �ImGret

 
(k,!) with

Gret
 

(k,!) = �i
R1
0 dtei!t

P
�
h
�
 ̂k,�(t),  ̂

†
k,�(0)

 
i, rep-

resenting the conduction-electron T matrix. Figs. 7(a)-
(b) shows flat (i.e heavy) bands in the vicinity of the

Jk/t=2.3Jk/t=1.8(a) (b)
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FIG. 7. Spectral function of the composite-fermion operator
A (k,!) on an L = 24 lattice at �t = 48 (a) in the ordered
phase and (b) in the Kondo-screened phase. (c) Local zero-
bias signal A (! = 0) as a function of temperature T/t at
L = 44 and for various values of Jk/t in the ordered and
disordered phases.

Fermi energy, both below and above the critical point
Jc

k
/t ' 2.1. In Fig. 7(c) we plot A (!) = 1

L

P
k A (k,!)

as a function of temperature and Jk. To avoid ana-
lytical continuation, we use the relation A (! = 0) '
(1/⇡)�G (⌧ = �/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of A (! = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by

Landau  
damped 
Goldstone mode

Spin inherits
 properties of  
 metal  

Two  
spinon  
continuum
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We explore the physics of a spin-1/2 Heisenberg chain with Kondo interaction, Jk, to a two-
dimensional electron gas. At weak Jk the problem maps onto a Heisenberg chain locally coupled
to a dissipative Ohmic bath. At the decoupled fixed point, the dissipation is a marginally relevant
perturbation and drives long-range antiferromagnetic order along the chain. In the dynamical spin
structure factor we observe a quadratic low-energy dispersion akin to Landau-damped Goldstone
modes. At large Jk Kondo screening dominates, and the spin correlations of the chain inherit
the power law of the host metal, akin to a paramagnetic heavy Fermi liquid. In both phases we
observe heavy bands near the Fermi energy in the composite-fermion spectral function. Our results,
obtained from auxiliary-field quantum Monte Carlo simulations, provide a unique negative-sign-free
realization of a quantum transition between an antiferromagnetic metal and a heavy-fermion metal.
We discuss the relevance of our results in the context of scanning tunneling spectroscopy experiments
of magnetic adatom chains on metallic surfaces.

Introduction. A spin-1/2 antiferromagnetic chain em-
bedded in a higher-dimensional metal, with Kondo cou-
pling Jk between spins and electrons, represents an arena
for rich physics. For two-dimensional metals, this relates
to scanning tunneling microscopy (STM) experiments,
with the ability to build and probe assemblies of mag-
netic adatoms on surfaces [1–5]. In higher dimensions,
Yb2Pt2Pb provides a realization of one-dimensional spin
chains embedded in a three-dimensional metal [6, 7]. Due
to the dimensionality mismatch, such a system remains
metallic even for a half-filled conduction band. It can
host a variety of phases that include Kondo-breakdown or
orbital-selective Mott states [8, 9], heavy-fermion physics
in which the magnetic spins, albeit sub-extensive, partic-
ipate in the Luttinger volume, as well as non-Fermi-liquid
states [10]. The understanding of quantum transitions
between these states is of considerable interest both ex-
perimentally and theoretically.

In this letter, we will consider the above setup for
two-dimensional electrons in the presence of a Fermi sur-
face. In the limit of weak Kondo coupling, one can fol-
low the Hertz-Millis approach [11, 12] and perturbatively
integrate out the fermions to arrive at an e↵ective de-
scription of the spin chain locally coupled to an Ohmic
bath [13–17]. As argued in Ref. 17, for an O(3) quantum
rotor model coupled to an Ohmic bath, the dissipation
is marginally relevant and leads to long-range magnetic
ordering along the chain. Hence, unlike in conventional
heavy-fermions systems where Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions directly drive magnetic or-
dering [18, 19], here the ordering is stabilized only by
the dissipation. As the Kondo coupling increases, Kondo
screening will compete with dissipation-induced ordering.
In particular, in the strong-coupling limit, it is expected
that the spin-rotation symmetry will be restored in the

chain, and the spin-spin correlations of the chain will in-
herit the power-law decay of the host metal. The physics
of the Heisenberg spin chain on a metallic surface can
hence be cast into the flow diagram of Fig. 1(a) where
Kondo-singlet formation and dissipation-induced order
compete.

0 1 2 3 4
0
1
2
3
4

    

FIG. 1. (a) RG flow diagram as suggested by the QMC data.
Green (red) bullets correspond to phases (critical points). We
observe an antiferromagnetic order-disorder transition with
hni the O(3) order parameter. In both phases Kondo screen-
ing, corresponding to a Higgs condensate hbi 6= 0, is present.
(b) Phase diagram in the Jh versus Jk plane as extracted from
QMC simulations at � / Lz with z = 2. The blue line at
Jk = 0 represents the decoupled Heisenberg chain that is un-
stable to dissipation-induced ordering upon Kondo coupling
to the fermions.

Model and Method. Our starting point is the Hamilto-
nian for a spin-1/2 chain on a metallic surface,

Ĥ = �t
X

hi,ji

�
ĉ†i ĉj + H.c

�
+

Jk

2

LX

r=1

ĉ†r�ĉr · Ŝr

+Jh

LX

r=1

Ŝr · Ŝr+�r. (1)

Here, the summation
P

hi,ji runs over nearest neigh-
bors of a square-lattice, L ⇥ L, conducting substrate, t
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Experimentally  relevant,  simple (sign free) model systems that can capture the 
physics of heavy fermion systems. 

Heavy fermion phase        (metal, impurities spin do        participate in Luttinger volume) 

Kondo breakdown phase  (metal, impurities spin do not participate in Luttinger volume)

Magnetic ordering in metallic environment

✔

✔

Goal:

✔
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II. MODEL

We propose a model of a Kondo heterostructure in which
a layer of magnetic impurities is embedded in a three-
dimensional metal as depicted in Fig. 1(a). The metallic envi-
ronment is modeled by a tight-binding Hamiltonian on a cubic
lattice of linear length ! and with translation invariance in the
G, H, and I directions. For the magnetic layer, we employ a
Heisenberg model with exchange �H on a square lattice with the
same lattice constant as that of the three-dimensional cubic lat-
tice. The two subsystems are coupled via a Kondo interaction
�K. Specifically, the Hamiltonian for this Kondo-lattice-model
heterostructure (KLM-hetero) is defined as

�̂KLM-hetero = �̂Fermi + �̂Heisenberg + �̂Kondo. (1)

Here,

�̂Heisenberg = �H

’
hi, j i

Ŷ
5

i · Ŷ
5

j (2)

describes antiferromagnetic spin-1/2 Heisenberg interactions
on nearest-neighbor bonds hi, ji of the square lattice. The
Hamiltonian of the three-dimensional metal reads

�̂Fermi = �C

’
h(i,'I ) , ( j ,'0

I )i,f

⇣
2̂
†

i,'I ,f
2̂ j ,'0

I ,f
+ h.c.

⌘

=
’

k2 ,:I ,f

nk2 ,:I 2̂
†

k2 ,:I ,f
2̂k2 ,:I ,f

. (3)

Here, 2̂†i,'I ,f
creates an electron with I-component of spin

f in a Wannier state centered around the lattice site (i, 'I)

of the cubic lattice, and hopping on nearest-neighbor bonds⌦
(i, 'I), ( j , '0

I
)
↵

in all three directions.
We use periodic boundary conditions, and define Bloch

states,

2̂
†

k2 ,:I
=

1
p

!
3

’
i,'I

4
8 (k2 ·i+:I'I )

2̂
†

8,'I ,f
(4)

with three-dimensional crystal momentum k = (k2, :I) ⌘

(:G , :H , :I). The dispersion relation reads nk2 ,:I =
�2C (cos :G + cos :H + cos :I), and in the absence of coupling
to the magnetic plane, the three-dimensional crystal momen-
tum is conserved up to a reciprocal lattice vector. The Fermi
surface of the metal is shown in Fig. 1(b).

�̂Kondo describes the Kondo coupling between the 2 con-
duction electrons and the magnetic impurities,

�̂Kondo = �K

’
8

Ŷ
2

i,'I=0 · Ŷ
5

i , (5)

with coupling strength �K and Ŷ
2

i,'I
=

1
2

Õ
f,f

0 2̂
†

i,'I ,f
2f,f

0 2̂i,'I ,f
0 . Importantly, the two-

dimensional array of magnetic impurities couples to the layer
of conduction electrons at 'I = 0, such that :I is no longer a
good quantum number. Low-energy scattering processes then
involve states on the projected Fermi surface, obtained from

Antiferromagnetic 
heavy-fermion 
metal

JK

Hertz-Millis type QCP

0+

Paramagnetic 
heavy-fermion 
metal

(a) Rz (b)

(d)
(c)

FIG. 1. (a) Sketch of Kondo heterostructure, consisting of a two-
dimensional array of magnetic impurities (blue dots) and three-
dimensional itinerant conduction electrons, modeled by a tight-
binding Hamiltonian on a cubic lattice (yellow dots). (b) Three-
dimensional Fermi surface of conduction electrons. (c) Projected
Fermi surface. (d) Ground-state phase diagram of model in Eq. (1),
as extracted from QMC results.

the summation over all :I . Technically, the projected Fermi
surface can be defined as the support of

�
'I

2,0 (k2,l = 0) = �
1
c

Im
n
⌧

'I'I

2,0 (k2,l = 0)
o
, (6)

where

⌧

'I'
0
I

2,0 (k2,l) = �8

’
8,f

π
1

0
3C 4

8k2 ·r 8+8lC

h{2̂
8,'I ,f

(C), 2̂
†

0,'0
I ,f

(0)}i0 (7)

denotes the noninteracting electronic Green’s function in the
two-dimensional reciprocal space. The projected Fermi sur-
face is depicted in Fig. 1(c).

A. Weak-coupling limit

At �K = 0, spins and conduction electrons decouple. To
set the stage, we will first discuss these degrees of freedom
separately, and then investigate how they couple perturbatively
in �K.

The spin and charge excitations of the conduction electrons
are characterized by the noninteracting susceptibility

j
0
(r � r 0, g � g

0
) ⌘

1
4
hĉ†r (g)2ĉr (g) · ĉ

†

r0 (g
0
)2ĉr0 (g

0
)i0 (8)

with ĉr = (2r ,", 2r ,#), and where the expectation value is
taken with respect to �̂Fermi. To simplify the notation, we set

Kondo  breakdown  transition

Dissipation induced  long  range order

QCP  between  antiferromagnetic   heavy fermion

 metal  and heavy  fermion metal 

Realization of  marginal  Fermi liquid  at  QCP 

between  antiferromagnetic   heavy fermion metal  
 
and heavy  fermion metal 
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FIG. 2. Phase diagram of a S = 3/2 chain on a 2D metal
in the D/t versus Jk/t plane at fixed Jh/t. At the Jk/t = 0
point, the vertical line along the D-axis corresponds to the
physics of a spin-3/2 chain as a function of D. At D/t = 0,
the chain undergoes an order-disorder QPT between an AFM
metallic phase and a topological Kondo phase as a function of
Jk. The orange dot marks the order-disorder quantum critical
point. The cyan dot represents the dissipation-induced AFM
ordering phase at finite but weak Jk/t. The dissipation in-
duced AFM phase undergoes a spin-flop transition to XY, for
D > 0, and to Ising, for D < 0, phases at finite anisotropies.
The relevance of the metallic surface at the transitions out
of the Haldane phase will generate new dissipation induced
criticality corresponding to the magenta dots. The brown
(yellow) dots mark the Gaussian (Ising) critical points of an
S = 1 chain.

B. Jk/t � 1

At Jk = 1, partial Kondo screening leads to a spin-
1 Haldane chain subject to single ion-anisotropy (see
Eq. (5)). This applies for both metallic and semimetallic
surfaces depicted in Figures 1 and 2.

The spin-1 chain exhibits distinct quantum phases de-
pending on the sign and magnitude of D [85, 87]. The
underlying phases and associated transitions are related
to pre-roughening surface phase transitions [88]. When
D = 0, the ground state is in the well known Haldane
phase–a gapped topological phase characterized by non-
local string order and spin-1/2 edge modes. The Haldane
phase remains stable for small |D|. According to Schulz
bosonization results [85], unlike the spin-3/2 chain, the
spin-1 chain exhibits transitions into the XY1 and XY2
phases at finite values of critical anisotropy D±

c
[85]. For

D > 0, the system undergoes a continuous QPT from
the Haldane phase to a large-D trivial phase, where the
ground state is dominated by local Sz = 0 configurations
on each site. This transition occurs at D+

c
⇡ 0.97 and

belongs to the Gaussian universality class with central
charge c = 1 [89]. On the other hand, for D < 0, the
Haldane phase becomes unstable and the system under-
goes another continuous transition at D�

c
⇡ �0.3 [90, 91]

into an Ising phase characterized by Néel order of al-
ternating Sz = ±1 doublet. This transition belongs to
the Ising universality class, with central charge c = 1/2.
Thus, the Haldane phase is sandwiched between these
two critical points and exists only in the intermediate
regime �0.3 . D . 0.97. The large negative D regime
corresponds to the XY2 phase, where higher transverse
spin-spin correlations,

⌦
(Ŝ+

0
Ŝ�
r
+H.c.)2

↵
are expected to

exhibit power-law decay.
We now consider small deviations from the large Jk

limit. Importantly, the coupling to the conduction elec-
tron is ferromagnetic (see Eq. (5)). This implies that
even for open boundary conditions where the spin-1 chain
hosts spin-1/2 edge states, the Kondo coupling of magni-
tude set by t2/Jk can be treated perturbatively. Neglect-
ing correlated hopping terms in Eq. (5), we can integrate
out the fermions and expand the fermion determinant up
to second order in 4t2/5Jk to obtain: S = SHaldane+SDiss

with SHaldane the action of the Haldane spin-1 chain with
single-ion anisotropy D and

SDiss = �
8S2t4

25J2

k

Z
d⌧d⌧ 0

X

r,r0

X

�,�0

(10)

nr+�(⌧)�(r + � � r0 � �0, ⌧ � ⌧ 0)nr0+�0(⌧
0).

Here, � runs over ±ay. As a function of the single-ion
anisotropy, the Haldane model undergoes quantum phase
transitions between Haldane and large-D (D > 0) as well
as Haldane and Ising (D < 0) phases. At these points,
coupling to the semi-metallic (metallic) surface will be
relevant provided that 3�2�n�4 > 0 (3�2�n�2 > 0),
where �n is the scaling dimension of the spin-1 operator.
Hence, for the semi-metallic surface and since �n > 0,
the coupling to the fermions is irrelevant, and the afore-
mentioned universality class of the quantum phase tran-
sitions in the Haldane model will not be altered. In con-
trast, for the metallic surface, the condition for the rel-
evance of the metallic surface reads, �n < 1/2. This
condition is satisfied [85, 89] for the Haldane model.
Thereby, the metallic surface introduces a relevant cou-
pling at the phase transition between the Haldane and
trivial large-D phase as well as between the Haldane and
Ising phase. The magneta points in Figure 2 indicate
new fixed points for these transtions.

C. Kondo and Kondo breakdown phases

We now consider Kondo and Kondo breakdown phases.
A sharp definition of the Kondo phase is based on the
electron count, via the Luttinger volume [20]. Our
model has translation symmetry along the chain direc-
tion. Hence, for an L⇥L lattice of conduction electrons,
our model maps onto a 1D chain with L conduction and a
spin degree of freedom per unit cell. On any finite lattice,
we can hence define a Luttinger volume as

V = ⇡ mod (L+ ns, 2), (11)

Ongoing work   S=3/2
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Motivated by recent scanning tunneling microscopy experiments on chains of Co adatoms on Cu
surfaces, we investigate the physics of a spin-3/2 Heisenberg chain with single-ion anisotropy (D) on
metallic and semi-metallic surfaces. In the strong Kondo coupling (Jk) limit, a perturbative analysis
maps the system onto a Haldane spin-1 chain with single-ion anisotropy, ferromagnetically coupled
to the metallic surface. This Haldane state, arising from the underscreening of the S = 3/2 chain,
is stable against small values of D and is characterized by topological edge modes. The nature of
the D-driven transitions out of this state depends on the metallic environment. Coupling to a metal
(semi-metal) constitutes a relevant (irrelevant) perturbation at the decoupled fixed point between
the spin-1 chain and the two-dimensional electron gas. In the large positive D limit, the system
maps onto an anisotropic spin-1/2 Kondo system that has been studied. For large negative D, in
the Ising phase, the spins are frozen. For small values of Jk, the nature of the metallic phase plays a
dominant role. On a two-dimensional semi-metal, the Kondo coupling is irrelevant at the decoupled
fixed point, Jk = 0, leading to a Kondo breakdown phase at weak coupling, irrespective of D. In
contrast, on a two-dimensional metal, the resulting dissipative Ohmic bath acts as a marginally
relevant perturbation at the decoupled fixed point, inducing antiferromagnetic ordering along the
spin chain. In this case, D drives a spin-flop transition between Ising and XY ordered phases. At
D = 0, we observe continuous transitions between the Kondo breakdown or dissipation-induced
long-range ordered phases and the underscreened Haldane phase. This understanding of the phase
diagrams is supported by scaling arguments as well as by unbiased, sign-free auxiliary-field quantum
Monte Carlo simulations.
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I. INTRODUCTION

Spin chains provide a fundamental platform for explor-
ing exotic phases of quantum matter, where quantum
fluctuations and topology give rise to phenomena that
transcend classical expectations [1]. Topology provides
a key distinction between half-integer and integer spin
chains due to presence of a #-term at # = 2⇡S in the
low-energy field theory [2–4]. For half-integer spins, the
system remains gapless and is described by a Luttinger
liquid with algebraic correlations. In contrast, integer-
spin chains possess a gapped excitation spectrum. The
former state is realized exactly in the A✏eck-Kennedy-
Lieb-Tasaki (AKLT) model [5]. This dichotomy under-
scores the profound role of topology in low-dimensional
magnets and the emergence of symmetry-protected topo-
logical (SPT) phases [5–7].
Canonical heavy fermion (HF) systems consist of lat-

tices of spin-1/2 magnetic impurities embedded in a
metallic host [8–10]. The key interaction in these sys-
tems is the antiferromagnetic Kondo coupling between
the spins and conduction electrons. In the HF phase, the
spins are screened by the conduction electrons via the
Kondo e↵ect [11–15]. This entanglement process gener-
ates a new itinerant electronic degree of freedom–the so-
called composite fermion [16–18]–which participates in
the Luttinger volume count [19, 20]. This phase corre-
sponds to the heavy fermion Fermi liquid (HFL), with a
coherence temperature set by the energy scale at which
the composite fermion emerges [21–23]. Below the coher-
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FIG. 1. Phase diagram of a S = 3/2 chain on a 2D semi-
metal in the D/t versus Jk/t plane at fixed Jh/t. At the
Jk/t = 0 limit, the vertical line along the D-axis characterizes
the physics of the spin-3/2 chain as a function of D. At
D/t = 0, the isotropic spin-3/2 chain undergoes a QPT from
a KBD phase to a topological Kondo phase as a function of
Jk. The green dot marks the KBD quantum critical point.
The grey-shaded region indicates a coexistence regime where
partial Kondo screening occurs alongside residual spin-1 chain
physics. The brown (yellow) dots mark the Gaussian (Ising)
critical points of an S = 1 chain.

S
(3/2)

Heisenberg
+ SDiss with S

(3/2)

Heisenberg
the action of the S =

3/2 Heisenberg model with single ion anisotropy,

SDiss = �
S2J2

k

2

Z
d⌧d⌧ 0

X

r,r0

3X

↵,↵0=1

nr,↵(⌧)�↵,↵0(r � r0, ⌧ � ⌧ 0)nr0,↵0(⌧ 0). (9)

In the above, �↵,↵0(r, ⌧) = hŝr,↵(⌧)ŝ0,↵0(0)i
0
corresponds

to the spin susceptibility of the conduction electrons.
Owing to the SU(2) spin symmetry of the metallic sur-
face, this quantitiy is diagonal and independent on ↵,↵0.
The S = 3/2 Heisenberg model has a very rich phase di-
agram [84]. For nearest neighbour coupling it maps onto
a Wess-Zumino-Witten (WZW) level-1 model and hence
shares the properties of the spin-1/2 chain. Upon switch-
ing on the easy axis anisotropy one will obtain Luttinger
liquid (Ising) phases for D > 0 (D < 0). In the Luttinger
liquid phase, the scaling dimension of the spin operator
satisfies �?  0.5. In particular at D = 0, �? = 0.5
and is given by Eq. (7) in the large positive D limit. For
D < 0 we expect long-range Ising order. For the Lorentz
invariant semi-metalic state, the spin susceptibility scales
as 1

p
|r|2+(vf⌧)

24 with vf the Fermi velocity. Thereby, at

the decoupled fixed point the local time displaced re-
tarded interaction will scale as b3�2�?�4 with b > 1 the
scaling factor. Since the Kondo coupling is irrelevant we
foresee, as in Ref. [39], a KBD phase in the small Jk limit.
For D < 0 where long ranged Ising order is present, we
can repeat the above argument with �? = 0 to again

obtain a decoupled phase. To summarize, the small Jk
region of Figure 1 corresponds to a KBD phase where
spin and conduction electrons are e↵ectively decoupled.

In the Kondo breakdown phase (KBD phase of Fig-
ure 1), the spin-3/2 Heisenberg chain in the presence of
a finite single-ion anisotropy D 6= 0 behaves as an iso-
lated one. Using bosonization techniques, Schulz pre-
dicted that the system exhibits a QPT at the isotropic
Heisenberg point and the critical point Dc = 0 separates
the two distinct XY critical phases–referred to as XY1
and XY2–for D > 0 and D < 0, respectively [85]. In the
XY1 phase (D > 0), both the transverse hŜ+

0
Ŝ�
r
+ H.c.i

and longitudinal hŜz

0
Ŝz

r
i spin-spin correlations decay al-

gebraically. For su�ciently large positive D, the higher-
energy Sz = ±3/2 states are suppressed, and the system
e↵ectively behaves like a spin-1/2 XXZ chain in the sub-
space of the low-energy Sz = ±1/2 doublet. Thus, the
D > 0 regime remains gapless with quasi-long-range or-
der. In the XY2 phase (D < 0), the anisotropy favors the
Sz = ±3/2 doublet. In the large negative D limit, the
higher Sz = ±1/2 states are separated by a large spin gap
�D = 2|D|, and the system again maps onto an e↵ective
spin-1/2 XXZ model within the low energy Sz = ±3/2
subspace. However, two-point transverse spin-flip pro-
cesses are suppressed, as flipping 2S = 3 spins requires
higher order processes. As a result, the transverse cor-
relation

⌦
Ŝ+

0
Ŝ�
r

+ H.c.
↵
decays exponentially, while the

longitudinal correlation
⌦
Ŝz

0
Ŝz

r

↵
acquires a long range or-

der. In this large negative D regime, higher order trans-
verse spin-spin correlations such as

⌦
(Ŝ+

0
Ŝ�
r

+ H.c.)2S
↵

are expected to show power-law decay.

For the metallic surface (See Figure 2) the local imag-
inary time displaced spin correlation function scales as
�(r = 0, ⌧) / 1/⌧2. A similar scaling argument as dis-
cussed above shows that the Kondo coupling is marginal
at the SU(2) symmetry point. Since at this point the
S = 3/2 spin-chain with nearest neighbour interactions
is described by the same level-1 WZW model as the
spin-1/2 chain, we can take over previous results for the
spin-1/2 chain. The Kondo coupling is marginally rele-
vant and leads to dissipation induced long ranged order
[44, 46].

The long ranged, dissipation induced, magnetically or-
dered state is characterized by spontaneous symmetry
breaking. At the SU(2) symmetric point, the direction
of the staggered magnetization is arbitrary and defines
the vacuum around which one will expand within a spin-
wave theory. The single-ion anisotropy D breaks down
the symmetry from SU(2) to U(1), and places energetic
constraints on the direction of the quantization axis. For
D < 0, the z-quantization axis is favoured whereas for
D > 0 spontaneous symmetry breaking occurs in the xy-
plane. This sudden change in the quantization axis and
thereby change of the vacuum state bears similarities to a
spin-flop transition [86], where the sudden change of the
quantization axis is driven by a time reversal symmetry
breaking magnetic field.
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