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Big picture

Large, “controllable” quantum machines (simulators, computers) are an
experimental reality

@Innsbruck

One can now take photos of many- body ;
wave functions!

] IniTe

How can we make sense of
3 such large amount of data?
N (2) Can we learn something

beyond correlations we know’?
N -




Main message

Described by the very same
mathematics!
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Theorist’s view: Information conundrum of guantum

computers and simulators

Components

N> 1 N ~0(1)
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Huge ‘many-body physics’ data sets: what are we talking
about? And why?

Unsupervised learning and intrinsic dimension

lllustration 1: classical partition functions and
complexity - is a critical point complex?

lllustration 2: emergence of scale-free networks and
scalable validation of quantum simulators in lattice models

lllustration 3: stochastic classification of matter




What are our datasets? Quantum simulation and

computing

Projective measurements
of a many-body state

15 B _ _
R
>1.0 - O ..
5 00000 00000
0.5 -
3 X1=1-11-1101-11-11
0.00 0.25 0.50 0.75 Gross’s and Bloch’s group,

Nature 2021 (optical lattices)

X1 = 10001001010101...

Very generic capability -
trapped ions, superconducting
circuits, etc..

Scholl et al., Nature 2021
(optical tweezers)



What are our datasets? Stat mech

Stat mech: sampling 7 _ Z o BEx _ Z P(X)

a partition function

{X} {X}
X : some configuration
Sampling of a probability
distribution (direct, Markov {X1, X2,..Xn}
chain, etc.)
Example: Ising model, 4 sites Datasets: spin configurations

E(3)=—) sis;, {[0100], [0101], [1111], ...}

(4,7)



Why are we looking at these? Some specific

motivations




Motivation 1: guantum sciences

Quantum information
viewpoint: new tools

~Cross-platform verification of
wave functions

>Noise ‘tomography’

~Robustness of information

Can we trust the
outcome of quantum
computers/simulators?

Cirac & Zoller, Nat. Phys. 2012;
Buluta and Nori, Science 2014 Complementary to microscopic approaches:
randomized benchmarking, optimal control / calibration



Motivation 2: statistical physics

Quantum many-body
viewpoint: new concepts "
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~How complex is this wave function?
~Can we detect non-local (topological) correlations?

Note: very same motivations as in neuroscience / soft-matter / molecular
science



Theory big picture: “complexity diagram”

Kolmogorov
(algorithmic)
complexity
(“space”)

Refers to information
content

- Quantifies incapability
of compressing
information

> NP hard to compute.
Related to ‘effective
field theory’

Given a many-body (quantum) state:

- How are they related?

~ Is KC related to physical phenomena?
- Can we actually measure KC?

Computational complexity
(“time”)

- Refers to a task
- Describes a resource count

Examples: circuit complexity, computational
cost of classical algorithms, holographic,..



Kolmogorov complexity

Kolmogorov complexity: How long

Meaningful if we fix the

shall my computer code be in order to ‘programming language’
reproduce the data structure obtained

in the experiments?

Ex: bit strings:

111111111111111111111
111111111111111111111
111111111111111111111
111111111111111111

“Write 1 N times”

K =15

Refs.: Wikipedia page, Li
and Vinayi, An Introduction
to Kolmogorov complexity
and its applications

111000111000111000 111000111000111000 11000101010110011010
oo RO 10101010101010101011
00101010001111111001
1010000001111111
“Write 111000 N/6 times” “Write 111000..1111"
K = 22 K=6+N=173

Q: how to adapt to many-body
states?




Classical partition functions and
complexity - is a critical point
complex?



Tool 1: The intrinsic dimension - “geometrical”

The Intrinsic dimension Widely applied in ab initio }

the minimal number of variables g‘oc']ﬁ?“'ar dy:a)miCS (Laio,
required to describe a dataset odriguez, €tc.).

|

Intuition: the intrinsic dimension is informative about

(1) number of relevant degrees of freedom, and
Op((2) complexity of a manifold (qualitative so far)
NeE€Uus a smyre varraoTe U PToOpEeETTy REVIEW, GIENTIO €t dl.,

describe the object of interest Chem Rev. 2021



Kolmogorov complexity

Kolmogorov complexity: How long Meaningful if we fix the
shall my computer code be in order to ‘programming language’
reproduce the data structure obtained

in the experiments?

Ex: bit

11111111 Q: how to adapt to many-body states?

i Is this connected to physical phenomena?

111111111

“Write 1 N times” “Write 111000 N/6 times” “Write 111000..1111"
K =15 K =22 K=6+N=173

Refs.: Wikipedia page, Li
and Vinayi, An Introduction
to Kolmogorov complexity
and its applications



A basic example: a 3 site model

Simple example: sampling a
3-site rotor model

1) States / data space (D=3)
T = (0171927193)

2) Equilibrium weight:

p(E) ~ e EONT

3) Hamiltonian:

— — —

E@)=-35-5,

All of this makes sense! but
what about transitions?




How does complexity behave at criticality?

Is a critical point complex or

- simple? T
Intuition 1 [real space]: at Intuition 2 [RG]: at critical
critical points, correlations points, physics is universal
diverge!
£ S o (O(r)) = f(r,v.2.)
very correlated manifold, so manifold is very constrained,
maximal intrinsic dimension so minimal intrinsic dimension
Strateqgy

(1)
(2)

numerical tests on classical statistical mechanics models
Theory [only sketched here]




Many-body: the Ising model in 2D

Hamiltonian
E(S) - Z 5155 Second order (conformal)
(4,9) phase transition at
Data configurations T, =2/In(1+ V2) ~ 2.26...
R v =1
§=(81,82,..,SN.)

Data structure: 7 = ($11, S12,..) = (0,1,0,1,1,1,0,...)



Data space of the Ising model in 2D

Data configurations

S=(s1,52,.--,SN.) s1 = (s11, S12,..) = (0,1,0,1,1,1,0,...)

Distance between points: = ] ‘ ] |
Hamming distance S ) 2 : Sp = p
Example: N=4
S1 S9 S3 r(s1,52) =2
A A A A A
r(s1,83)=2
v
4 4 4 4 r(sg,s3)=4
v v




Intrinsic dimension: emergent simplicity

A—A], =40 V%1 = 90

. L =50 &AL =100

x—x], =60 —al = 120,
L =70 o—oL = 140!
L = S0 !

emergent simplicity:
manifold simplifies at
transition points!

Second order (conformal)
phase transition at

T.=2/In(1+v2) ~ 2.26...

v =1



Intrinsic dimension: universal behavior

Universal collapse
scaling from
renormalization group

I =1L

Scaling function

f(&/L)

£~ (T - TC)_V

Second order (conformal) phase

transition at

T.=2/In(1 +2) ~ 2.26...

v =1

Universality of data
structure: structural
) dL_C transition in data space

T T—C 0 15T LY
Free parameters: Tc, V, C

T, = 2.283(2), v = 1.02(2), ¢ = 0.410(5)

Review: A Pelissetto & E Vicari, Physics Reports (2002)



Why is complexity minimal at transition points?

Rationale: complexity of the manifold dominated by the most
significant correlation function (generically, not few-body)

Math: cumulant expansions (+more)

[ In(1 —1/N,)
T Infry(1)] — Infri(1)] L 1 .
\ 4 =S YT In((5:5) "€
In[ro(1)] = Infry (1)] = Fo + Fa + ... Origin of universality of data

structures!

F p-point correlation functions
P between configurations



For classical stat mech sampling,
Kolmogorov complexity <—> intrinsic dimension

1

1 d = —

Complexity is minimal for field theories / critical points f
—> Emergent simplicity

see also:

data compression: O. Melchert and A. K. Hartmann, Phys. Rev. E 91, 023306 (2014);
local complexity: Schmitt and Lenarcic, Phys. Rev. B 106, L041110 (2022);

out of eq.: Martirani et al. PRX 9, 011031 (2019).



So far: theory. Quite idealized conditions (no noise, huge sampling, etc.)

What about experiments?
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Rydberg atoms in optical tweezers Spinor Bose gases

Scholl et al., Nature 2021 Prufer et al., Nat. Phys. 2020




Rydberg atom arrays: quick intro

a
V(R) = Cy/R’ Rydberg blgckade 5 66000
E 15 \«" potential o o oA .
—— ) " 0.Q. o e 0
Q X /ORy/ONQ © Q0
i | 00 0 0
1 |¢+> ‘\ /I
—g) ] /O O OO0
V20 0T 00000
e — V(Rp) = Q
Ry,
Blockade
radius

Effective Hamiltonian:
& — Aw > . . - . A
Hpgg = Zj (Q g; + 5”]) + Zj<l Viinmy

See pioneering works in Palaiseau, Wisconsin, Stuttgart, Heidelberg, Munich, Harvard, ...



Data mining Rydberg atom arrays: crossing a phase

transition

(a) A0 A0

t(ps)

0.5 1.5 2.5

{X1, X2, ..., X}

) (1 1
X, = {xg ),xé ), xs\,)}

N




Physics: emergent simplicity across Kibble-Zurek

25}
20k Short times: random
S network, Id not really
informative
10f (b1)L =8
1 2 3 7 5
40 KZ-like regime: scale-free
ol network, ld corresponds
5 to Kolmogorov
~ 20} complexity
10k (b2) L =10
1 2 3 7 5
t(us)

Observation of emergent

simplicity, a consequence

Crossing a quantum phase transition of universal behavior on
(Kibble-Zurek-like regime) iInformation propagation




lq

25}F

20

15|

10F

40

30F

20

10

Physics: emergent simplicity

(b1)L =28

Q: Why is Kolmogorov
complexity informative
about experiments?

2 3

(b2) L =10

2 3
t(us)

Our approach: full
stochastic wave function
characterization




For classical stat mech sampling,
Kolmogorov complexity <—> intrinsic dimension

1
Complexity is minimal for field theories / critical points f
—> Emergent simplicity

Observation of decreasing complexity in L
quantum simulators (Kibble-Zurek) ol




Can we go beyond bare complexity?
How?



Can we go beyond complexity only?

Manifold (math) Physics (wave function)

Layers of understanding: Layers of understanding:
dimensionality dimensionality
curvature
orientability V07007

topological properties
See also works on persistent homology: SciPost
Phys. 11, 060 (2021); 17, 100 (2024)



Collection of wave function

shapshots
(Stochastic sampling of a wave
function)

Interpretation of those in

data space
(e.g.: Fock space)

Mapping to networks
Definition of a metric and ‘cut-off’
scale in data space

@ = ea| PP i )+ el T

L

Wt




Scale-free network conjecture

o©

The wave function snapshots of strongly correlated

quantum matter are described by scale-free networks

Quantum Computers/
simulators:
Spin systems
Hubbard models
Lattice gauge theories
All architectures alike
(cQED, atoms, ions, etc.)

1

0.001]

1e-06|

Barabasi, Network Science

Fraction of nodes with k neighbors

— Scale-free, y=2.5
Poisson, <k> =10




What is a scale free network?

Fraction of nodes with k neighbors

1 ——rrr—r1— Scale-free, y=2.5
\\\ Poisson, <k> =10
\\\ (1) Large number of hubs!
~
0.001f RN -
\\\ (2) Strong fluctuations

le-06 ) e 02/</€> > 1

(Example: friends on Facebook)

! ! Lo ! ! R |
1 10 100
k
Known examples:
A Non-Small Cell Lung Cancer - Social networks
- J Al - Power grids
N = ’* ~ Airports
A A - Ecological systems
> VA P - Cell dynamics...
R el
\ ¥ Edges 4369 > Quantum computers and

simulators!



Emergence of scale-free networks: classical sanity

checks
Classical statmech / 2D Both critical and ordered
Ising regimes are scale free!
o 17501
Jo-2 o 1o 1500 w’j
) _-:-_ T 1250
= B = 00
A, 10 : T = 298 N\ 750
. D S
10 e T— o35 500 A
100 ] D 250
. —@— T =250 0-
100 10t 102 10° 9.9 9.3 9.4 95
k T

Strongly correlated regimes indeed described by scale-
free networks!

Situation is ubiquitous - quantum Ising, classical 3D, etc. . However, exact
applicability regime yet to be determined



Emergence of scale-free networks: experiments

(b) 10°}F Exp. —o— t=140us —@— t=2.60us
=0 t=1.80us =@ t=3.00us
=@ t=2.20us -@— t=3.80us

1071
X
Q
1072
103 E . — . : —
100 10! 102

(C) 100 NQS —@— t=139us =@= t=275us
=0 t=1.89us == t=3.07us
—@— t=227us =@= t=3.55us

1071
X
Q.
1072
103k . — .
100 101 102

Short times: random network
After that: emergent scale-free network




Emergence of scale-free networks: experiments

(b) 10°}F Exp. —o— t=140us —@— t=2.60us
=0 t=1.80us =@ t=3.00us
=@ t=2.20us -@— t=3.80us

1071
X
Q
1072
103 E . — N . . —
100 10! 102

(C) 100 NQS —@— t=139us =@= t=275us
=0 t=1.89us == t=3.07us
—@— t=227us =@= t=3.55us

1071
X
Q.
1072
103k . — N .
100 101 102

Short times: random network
After that: emergent scale-free network




Is this an effect of finite sampling?

., (a) t = 1.52us : gz%gggo
T ool = nlsom Scale-free is a robust
o | | | feature, at least
AL according to our
10-1 f R simulations based on
< Ll Neural network states
107 101 102 10°
(c) t=3.18us
10—1 -
o
10—3 |
10-° N

100 10! k 102 103

Markus
Schmitt



Quantum information tools: cross-platform
verification

Epps-Singleton test
of compatibility
between probability
distributions

Py > 0.1

*

Compatible

Cross-platform verification up
to timescales where simulations
become not fully reliable

(al) - tep=18us [(32) W tep=224s [(53) texp = 2.6 US
. % ___________ — i ______________________ I
(ad) (a5) (ab)
* *
texp = 3.0 texp = 3.4 us -‘- texp = 3.8 us

2 tim(us) 4

2 tim(us) 4




For classical stat mech sampling,
Kolmogorov complexity <—> intrinsic dimension

1
Complexity is minimal for field theories / critical points f
—> Emergent simplicity

25

20

Observation of decreasing complexity in
quantum simulators (Kibble-Zurek) 1of

lg

(b1)L=28

1 2 3 4 5

(c) t=3.18us

New math to understand wave function 10
stochastically: wave function networks * 10

k

105 L L L
100 101 k 102 103




Is there a classification of matter
based on photos?



Traditional classification schemes

Ginzburg-Landau criterion: symmetry breaking

Gapless matter: critical behavior, field theory

80’s: topological matter

- free theories: Altland-Zirnbauer and topological insulators

- Interacting theories: symmetry-protected-topological phases

- Interacting theories: topological order - projective symmetry group

All of these relate certain wave function properties (sometimes
coarse-grained) to response, under specific posits (symmetry,
constraints on emergent gauge structure, dimensionality)

Excellent review: Wen’s book



Can we do the same with partial information?

ET
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Our working principle: Occam’s razor

Entia non sunt
multiplicanda praeter
necessitatem

Classify a many-body wave function according to the basis which
requires the minimal number of variables



Stochastic classification of quantum matter in one

dimension

Step 1: determine
minimal complexity basis

(a) Input (c) Network Construction (d) Output

Intrinsic Dimension
40/9-9- ¢ Buyso-88

q o
e) State classification :

30
Kk 320‘ + X .
40 oY |
o Z

10+

ERN P

Ordered Disordered Critical E % oo
hases hases hases 0-— i
P P Y 0 1 2
Kolmogorov . h
. Low Low High _ .
Complexity 9 20 Degree Distribution
_1<0
LR Erdos-Rényi Erdos-Rényi Scale-free 10 80
structure 10-2
Entanglement Area Area log L <10-3] :0000
scaling e 0 a ERN % O<><><>SFN
; o % ‘Hubs 10744 @ %
v 0= \ RA Ao\ ) oo ~ 0
ly) > X'= i 8 105 & N9 X T hups
\ o J\& A, ' T .0, ' o (/'
X@— {4‘_1_17, } s 100 10! 102 103
k

Step 2: analize minimal
complexity basis network



Summary and outlook

Plenty of potential for fruitful interactions between
(unsupervised) machine learning and physics!

New conceptual “angle”. data complexity and relation to
many body

Future:

- Role of complexity in variational states

- Relation between complexity and out of equilibrium
> Use in experiments

> And more!
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