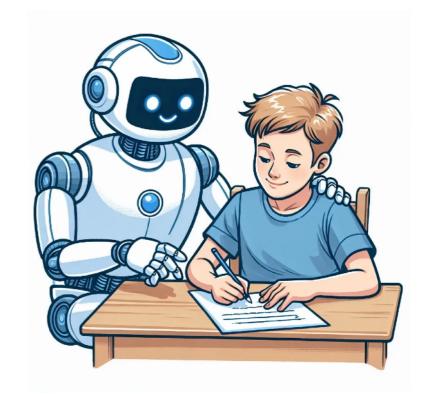
Content

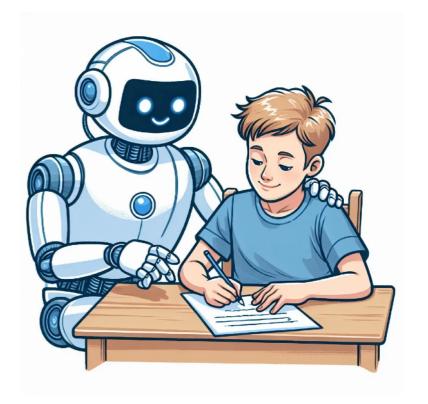
0. Introduction

- 1. Regression
 - 1.1 Multivariate Linear Regression (curve fitting)
 - 1.2 Regularization (Lagrange multiplier)
 - 1.3 Logistic Regression (Fermi-Dirac distribution)
 - 1.4 Support Vector Machine (high-school geometry)
- 2. Dimensionality Reduction/feature extraction
 - 2.1 Principal Component Analysis (order parameters)
 - 2.2 Recommender Systems
 - 2.3 Clustering (phase transition)

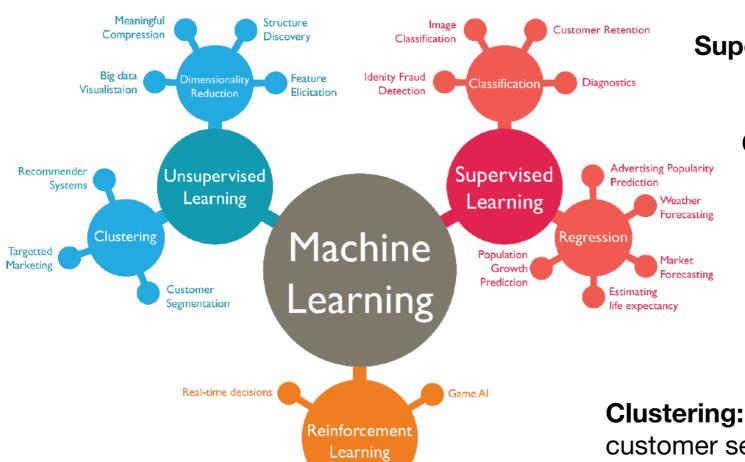


Content

- 3. Neural Networks
 - 3.1 Biological neural networks
 - 3.2 Mathematical representation
 - 3.3 Factoring biological ingredient
 - 3.4 Feed-forward neural networks
 - 3.5 Learning algorithm
 - 3.6 Universal Approximation Theorem



Al & Machine Learning Basics



Supervised Learning: Classification & Regression

Input —> machine/model —> Output Correct outputs are provided by the supervisor

Unsupervised Learning: only have input data

Find regularities from the input

customer segmentation, customer relationship management, outlier detection; image compression bioinformatics: DNA, RNA, amino acids, Motif, Proteins, sequence alignments

Good references from towards data science

Learning Tasks

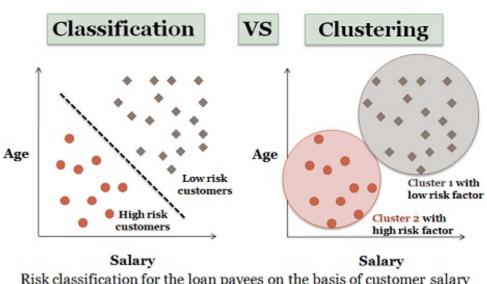
Skill Acquisition

Robot Navigation

a-one-stop-shop-for-principal-component-analysis

https://setosa.io/ev/principal-component-analysis/

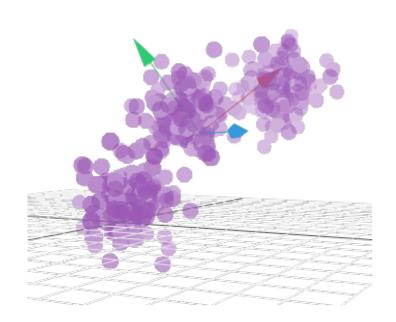
Understanding Principal Component Analysis

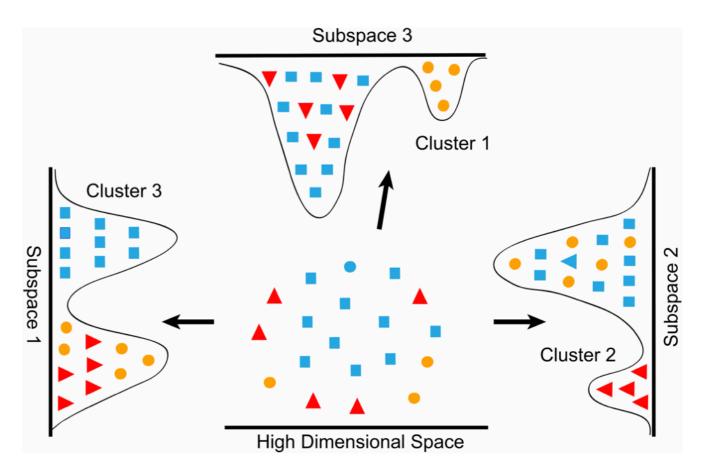


Risk classification for the loan payees on the basis of customer salary

Dimension Reduction and Feature Extraction

- Reduce the dimensionality of the problem, decrease the complexity;
- Simpler models are more robust;
- Knowledge extraction

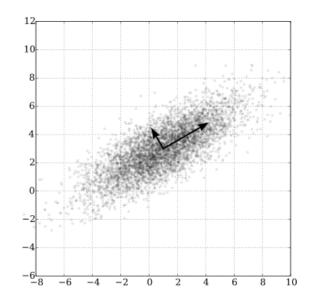




- Feature Selection/Elimination:
- Advantage: find k out of N dimension dataset and discard the other N-k features
- Disadvantage: gain no information from those variables dropped

Feature Extraction:

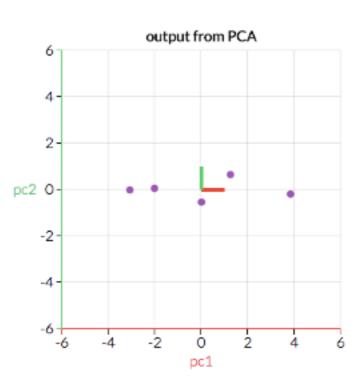
- Find new set of k-dimensions that are combinations of the original N-dimension
- Principal Component Analysis (PCA) is a technique for feature extraction.
- Advantage: each of the new variables after PCA are all independent of one another

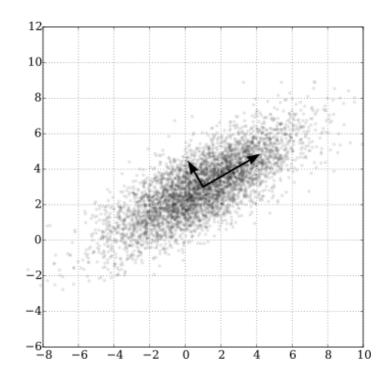


- Find linearly independent k dimensions which can represent the N dimension data
- More important = more variance / more spread out data
- Figure 1.2 Those newly found k dimensions should allow us to predict/reconstruct the original dimensions, with minimal projection/reconstruction error

Which direction is more important?

Then, let's move to that direction





By projection, we reduce the dimensionality of feature space

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_N^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_N^{(2)} \\ \vdots & & \vdots & & \vdots \\ x_1^{(M)} & x_2^{(M)} & \cdots & x_n^{(M)} \end{bmatrix} \quad \text{Mean value} \quad \mu_j = \frac{1}{M} \sum_{i=1}^M x_j^{(i)} \\ \text{Variance} \quad \sigma_j^2 = \frac{\sum_{i=1}^M (x_j^{(i)} - \mu_j)^2}{M} \quad Z = \begin{bmatrix} \frac{x_1^{(1)} - \mu_1}{\sigma_1} & \frac{x_2^{(1)} - \mu_2}{\sigma_2} & \cdots & \frac{x_N^{(1)} - \mu_N}{\sigma_N} \\ \frac{x_1^{(2)} - \mu_1}{\sigma_1} & \frac{x_2^{(2)} - \mu_2}{\sigma_2} & \cdots & \frac{x_N^{(M)} - \mu_N}{\sigma_N} \end{bmatrix}$$

Covariance matrix

$$\Sigma = \frac{1}{M} \ Z^T Z = \begin{bmatrix} \frac{x_1^{(1)} - \mu_1}{\sigma_1} & \frac{x_1^{(2)} - \mu_1}{\sigma_1} & \cdots & \frac{x_1^{(M)} - \mu_1}{\sigma_1} \\ \frac{x_2^{(1)} - \mu_2}{\sigma_2} & \frac{x_2^{(2)} - \mu_2}{\sigma_2} & \cdots & \frac{x_2^{(M)} - \mu_2}{\sigma_2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{x_N^{(1)} - \mu_N}{\sigma_N} & \frac{x_N^{(2)} - \mu_N}{\sigma_N} & \cdots & \frac{x_N^{(M)} - \mu_N}{\sigma_N} \end{bmatrix} \times \begin{bmatrix} \frac{x_1^{(1)} - \mu_1}{\sigma_1} & \frac{x_2^{(1)} - \mu_2}{\sigma_2} & \cdots & \frac{x_N^{(1)} - \mu_N}{\sigma_N} \\ \frac{x_1^{(2)} - \mu_1}{\sigma_1} & \frac{x_2^{(2)} - \mu_2}{\sigma_2} & \cdots & \frac{x_N^{(M)} - \mu_N}{\sigma_N} \end{bmatrix} / M$$

$$=\begin{bmatrix} \sum_{i=1}^{M} (\frac{x_{1}^{(i)} - \mu_{1}}{\sigma_{1}})^{2} & \sum_{i=1}^{M} \frac{x_{1}^{(i)} - \mu_{1}}{\sigma_{1}} \frac{x_{2}^{(i)} - \mu_{2}}{\sigma_{2}} & \cdots & \sum_{i=1}^{M} \frac{x_{1}^{(i)} - \mu_{1}}{\sigma_{1}} \frac{x_{N}^{(i)} - \mu_{N}}{\sigma_{N}} \\ \sum_{i=1}^{M} \frac{x_{2}^{(i)} - \mu_{2}}{\sigma_{2}} \frac{x_{1}^{(i)} - \mu_{1}}{\sigma_{1}} & \sum_{i=1}^{M} (\frac{x_{2}^{(i)} - \mu_{2}}{\sigma_{2}})^{2} & \cdots & \sum_{i=1}^{M} \frac{x_{2}^{(i)} - \mu_{2}}{\sigma_{2}} \frac{x_{N}^{(i)} - \mu_{N}}{\sigma_{N}} \\ \vdots & & \vdots & & \vdots \\ \sum_{i=1}^{M} \frac{x_{N}^{(i)} - \mu_{N}}{\sigma_{N}} \frac{x_{1}^{(i)} - \mu_{1}}{\sigma_{1}} & \sum_{i=1}^{M} \frac{x_{N}^{(i)} - \mu_{N}}{\sigma_{N}} \frac{x_{2}^{(i)} - \mu_{2}}{\sigma_{2}} & \cdots & \sum_{i=1}^{M} (\frac{x_{N}^{(i)} - \mu_{N}}{\sigma_{N}})^{2} \end{bmatrix} \\ M \\ \text{Symmetric} \\ \text{positive semidefinite matrix}$$

$$\sum = cov[x_i, x_j] = E[(x_i - E[x_i])(x_j - E[x_j])] \qquad j = 1, 2, \dots, N$$

 $ule{1}{2}$ Understand the eigenvalue decomposition $\;\Sigma=\mathbf{P}\mathbf{D}\mathbf{P}^T=\mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

$$\sum_{(N\times N)} = \underbrace{\begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_N \\ \downarrow & \downarrow & & \downarrow \end{pmatrix}}_{\mathbf{P}:(N\times N)} \underbrace{\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}}_{\mathbf{D}} \underbrace{\begin{pmatrix} \leftarrow & \mathbf{u}_1 & \to \\ \leftarrow & \mathbf{u}_2 & \to \\ \vdots & & \\ \leftarrow & \mathbf{u}_N & \to \end{pmatrix}}_{\mathbf{P}^T:(N\times N)}$$

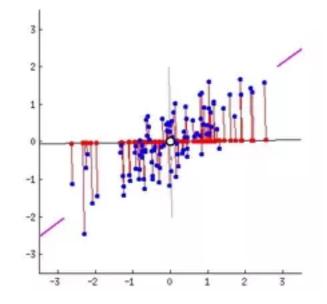
- P matrix of eigenvector, eigenvectors are orthogonal and linear independent
- **D** matrix of eigenvalues
- $ule{1}{
 ule{1}{3}}$ Sort eigenvalues from large to small, sort the eigenvector accordingly ${f P}^*$
- $ule{1}{}$ Rotate data to the principle components ${
 m f Z}^*={
 m f Z} imes{
 m f P}^*$
- Determine how many features to keep
- That's it, PCA.

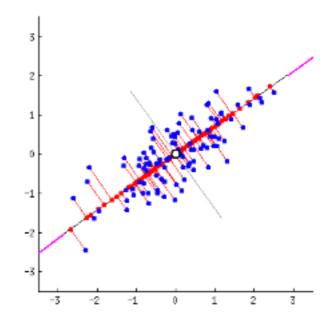
"In fact, every principal component will ALWAYS be <u>orthogonal</u> (a.k.a. official math term for perpendicular) to every other principal component. (Don't believe me? <u>Try to break the applet!</u>)"

A cat, just to get your attention. :)

$$\mathbf{Z}^* = \mathbf{Z} \times \mathbf{P}^*$$
 $\mathbb{R}^{M \times k} \quad \mathbb{R}^{M \times N} \quad \mathbb{R}^{N \times k}$

- Find new set of k-dimensions that are combinations of the original N-dimension,
- Dimension reduction





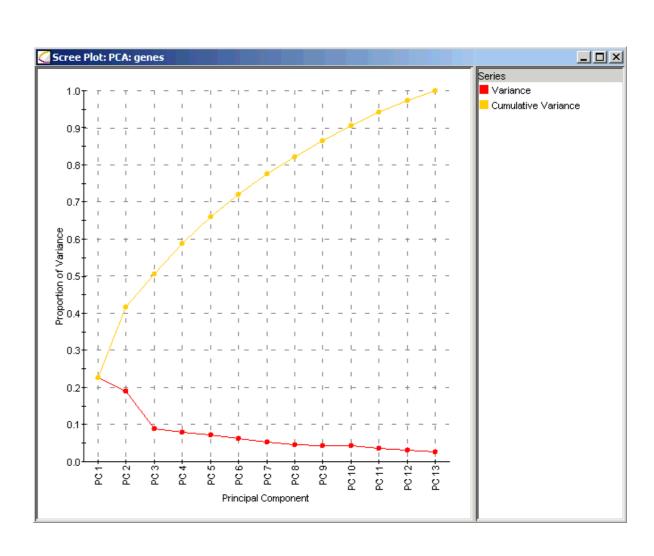
Thus, PCA is a method that brings together:

- 1. A measure of how each variable is associated with one another. (Covariance matrix.)
- 2. The directions in which our data are dispersed. (Eigenvectors.)
- 3. The relative importance of these different directions. (Eigenvalues.)

how many features to keep versus how many to drop

- 1. select by hand
- 2. calculate the proportion of variance explained

proportion of variance =
$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{N} \lambda_i}$$



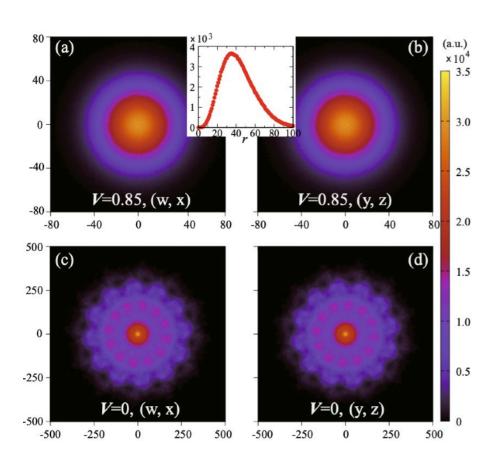
ARTICLE OPEN

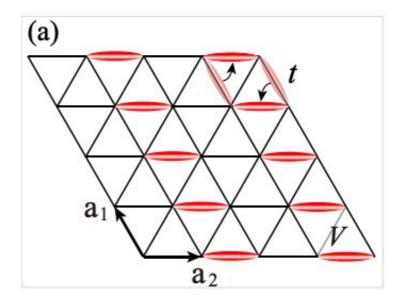
Topological phase transition and single/multi anyon dynamics of Z_2 spin liquid

Zheng Yan ¹0¹, Yan-Cheng Wang², Nvsen Ma³, Yang Qi ¹0^{4,5,6 ™} and Zi Yang Meng ¹0 ™

Among the quantum many-body models that host anyon excitation and topological orders, quantum dimer models (QDM) provide a suitable playground for studying the relation between single-anyon and multi-anyon continuum spectra. However, as the prototypical correlated system with local constraints, the generic solution of QDM at different lattice geometry and parameter regimes is still missing due to the lack of controlled methodologies. Here we obtain, via sweeping cluster quantum Monte Carlo algorithm, the excitation spectra in different phases of the triangular lattice QDM. Our results reveal the single vison excitations inside the Z_2 quantum spin liquid (QSL) and its condensation towards the $\sqrt{12} \times \sqrt{12}$ valence bond solid (VBS), and demonstrate the translational symmetry fractionalization and emergent O(4) symmetry at the QSL-VBS transition. We find the single vison excitations, whose convolution qualitatively reproduces the dimer spectra, are not free but subject to interaction effects throughout the transition. The nature of the VBS with its O(4) order parameters are unearthed in full scope. Our approach opens the avenue for generic solution of the static and dynamic properties of QDMs and has relevance towards the realization and detection of fractional excitations in programmable quantum simulators.

npj Quantum Materials (2021)6:39; https://doi.org/10.1038/s41535-021-00338-1





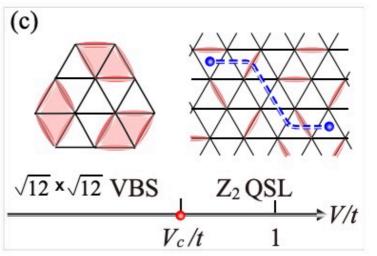


Table 1.	Principal component analysis.					
v	0.5	0.6	0.7	0.8	0.9	1
L_1/L_2	85.03	82.05	76.18	68.48	51.36	29.71

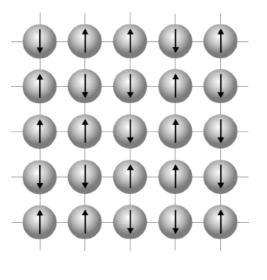
 L_1/L_2 means the first largest eigenvalue over the second of the momentum-space vison correlation function matrix at *B* point. All data are obtained at a 12×12 lattice with $\beta = 200(T = 1/200)$.

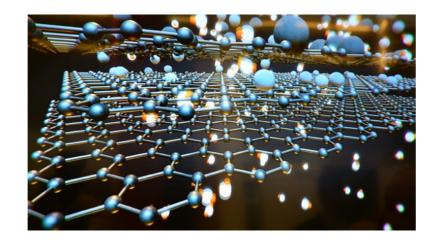
In order to numerically confirm that the order parameter ϕ_i indeed captures the QSL-VBS transition, we perform a principal component analysis (PCA) on the vison correlation function C_v to extract the condensing mode near the transition. PCA diagonalizes the 4×4 matrix of the momentum-space vison correlation function at the B point, and identifies the eigenvectors with the largest eigenvalues corresponds to the modes represented by the order parameter ϕ_i . We list the ratio of the first largest eigenvalue over the second at V=0.5-1 in Table 1. Since the largest eigenvalue always dominate, it shows that the principal component of the VBS structure is indeed the expected $\sqrt{12}\times\sqrt{12}$ order. The theoretical analysis further predicts that, at the QSL-VBS critical point, the transition point acquires an emergent O(4) symmetry, as O(4)-symmetry-breaking terms become irrelevant.

Al & Machine Learning Basics

Ising model, continuous phase transition workhorse for statistical physics

https://mattbierbaum.github.io/ising.js/

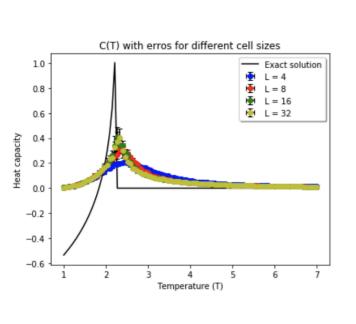


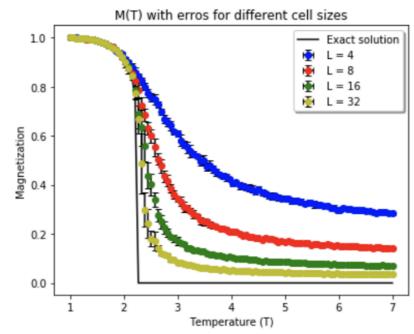


$$H = -J \sum_{\langle i,j \rangle} S_i^z S_j^z \qquad S_i^z = \pm 1$$

Configuration space: 2^N

https://en.wikipedia.org/wiki/Ising_model#/media/File:Ising_quench_b10.gif





$$m = \frac{1}{N} \left| \sum_{i=1}^{N} S_i^z \right|$$

$$m(T) = |T - T_c|^{\beta}$$
 with $\beta = 1/8$ in 2D