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Main results

We propose the convex-roof extension of quantum conditional 

mutual information (“co(QCMI)”) as a diagnostic of long-range 

entanglement in a mixed state. We focus primarily on topological 

states subjected to local decoherence, and employ the Levin-Wen 

scheme to define co(QCMI), so that for a pure state, co(QCMI) 

equals topological entanglement entropy (TEE). By construction, 

co(QCMI) is zero if and only if a mixed state can be decomposed 

as a convex sum of pure states with zero TEE.

We show that co(QCMI) is non-increasing with increasing 

decoherence when Kraus operators are proportional to the product 

of onsite unitaries. For the 2d toric code decohered by onsite 

bit/phase-flip noise, we show that co(QCMI) is non-zero below the 

error-recovery threshold and zero above it. We conjecture and 

provide evidence that in this example, co(QCMI) equals TEE of a 

recently introduced pure state [2]. We develop a tensor-assisted 

Monte Carlo (TMC) computation method to efficiently evaluate 

the Rényi TEE for the aforementioned pure state and provide non-

trivial consistency checks for our conjecture. We use TMC to also 

calculate the universal scaling dimension of the anyon-

condensation order parameter at this transition.
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co(QCMI)

A mixed state 𝜌 can be expressed as convex sum of pure states, that is, 𝜌 = σ𝑖 𝑝𝑖 𝜓𝑖 𝜓𝑖 , where 𝑝𝑖 ≥
0, and σ𝑖 𝑝𝑖 = 1.

For any function 𝑓 defined on pure states, the convex-roof extension of 𝑓 on mixed states is defined as:

co 𝑓 𝜌 = inf 

𝑖

𝑝𝑖 𝑓 𝜓𝑖  | 𝜌 = 

𝑖

𝑝𝑖 𝜓𝑖 𝜓𝑖 ,𝑝𝑖 ≥ 0,

𝑖

𝑝𝑖 = 1

In our study, we focus on such extension of quantum conditional mutual information under the Levin-

Wen scheme, which measures the topological entanglement entropy (TEE) in pure states. We show 

that,

1. The co(QCMI) for local decoherence where Kraus operators are proportional to a unitary is 

monotonically non-increasing as a function of the decoherence rate. 

2. For toric code under local phase-flip or bit-flip decoherence in any dimension, the co(QCMI) must 

be non-zero in the regime where error-correction is feasible. Under certain assumptions, we also argue 

that the value of co(QCMI) equals the TEE of the pure toric code.

Model

We investigate the toric code model ground state 𝜌0 subjected to 

local decoherence in the form of phase-flipped error with error rate 

𝑝. More specifically, we focus on one decomposition for the 

decohered mixed state 𝜌 𝑝  proposed in Ref. [2] given as

𝜌 𝑝 = 

𝑔𝑥

𝜓𝑔𝑥
𝛽 𝜓𝑔𝑥

𝛽 ,

where 𝜓𝑔𝑥
𝛽 = 𝑔𝑥 𝜓 𝛽 , 𝑔𝑥 is product of Pauli-X operators 

that form closed loops, and the inverse temperature 𝛽 is related to 

error rate 𝑝 as tanh 𝛽 = 1 − 2𝑝. The pure state 𝜓 𝛽  is given 

by

𝜓 𝛽 ∝ 

𝑥𝒆

𝒵𝑥𝒆
𝛽 𝑥𝒆 ,

where 𝒵𝑥𝒆
𝛽 = σ𝑧𝒗

𝑒𝛽 σ𝑒 𝑥𝑒 ς𝑣∈𝑒 𝑧𝑣 is the partition function of the 

2d Ising model with bond strengths given by 𝑥𝒆.

Since states 𝜓𝑔𝑥
𝛽  are related to the state 𝜓 𝛽  via onsite 

unitaries. Such decomposition implies that co QCMI 𝜌 𝑝 ≤
TEE 𝜓 𝛽 .

Numerical Result

𝛾 ≈ ln 2 at low temperature for all system sizes, is monotonically 

non-increasing as p increases, and tends towards zero as 𝑇 → 𝑇𝑐. 

Further, as the system size is increased, γ tends towards ln 2 at a 

relatively higher temperature and is also non-zero up till a 

relatively higher temperature (i.e., the range of decoherence rate 

over which the topological phase is visible in a finite system 

increases).

Perhaps more interestingly, they strongly suggest that as one 

approaches the critical point, so that 𝐿 ≪  𝜉, Rényi co(QCMI) 

approaches zero. This is in strong contrast to (pure) ground state 

phase transition in toric code that is driven by a magnetic field, 

where in the critical regime, QCMI exceeds the TEE of the 

topological phase.

FIG. 2. Result for Rényi 

TEE 𝜸 using Levin-Wen 

scheme. Rényi TEE 𝜸 for the 

state |𝜓(𝛽)⟩ against 

temperature 𝑇 = 𝛽−1  and 

the rescaled temperature 

𝑇 − 𝑇𝑐 𝐿1/𝜈 (inset) with 

𝑇𝑐 = 0.951 and ǁ𝜈 ≈ 3.2.

Tensor-assisted Monte Carlo (TMC)

We computed TEE via co(QCMI) of Rényi entanglement entropy, namely, 𝛾 =
1

2
𝑆2 𝐴: 𝐵|𝐶 =

1

2
𝑆2 𝐴𝐶 + 𝑆2 𝐵𝐶 − 𝑆2 𝐶 − 𝑆2 𝐴𝐵𝐶 , with subregions A, B and C defined in Fig. 1 (b).

The second order Rényi entropy on subregion 𝐴 and its complement 𝐵 = ҧ𝐴 is defined as 𝑆2 𝐴 =
− ln tr 𝜌𝐴

2. For the pure state 𝜓 𝛽 , one finds,

tr 𝜌𝐴
2 =

σ𝑥𝒆,𝑥𝒆
′ 𝒵𝑥𝐴

′ ,𝑥𝐵
𝒵𝑥𝐴,𝑥𝐵

′ 𝒵𝑥𝐴,𝑥𝐵
𝒵𝑥𝐴

′ ,𝑥𝐵
′

σ
𝑥𝒆,𝑥𝒆

′ 𝒵𝑥𝒆 𝒵𝑥𝒆
′

=
𝒵𝑥𝐴

′ ,𝑥𝐵
𝒵𝑥𝐴,𝑥𝐵

′

𝒵𝑥𝐴,𝑥𝐵
𝒵𝑥𝐴

′ ,𝑥𝐵
′

where  ⋅ denotes the weighted average over bond configurations with the joint probability 

proportional to the corresponding partition functions 𝒵𝑥𝒆 and 𝒵𝑥𝒆
′ . 𝒵𝑥𝐴

′ ,𝑥𝐵
, 𝒵𝑥𝐴,𝑥𝐵

′  are simply Ising 

partition functions with bonds in region 𝐴 swapped between the two replicas.

The calculation of the mixed state co(QCMI) is mapped to the random bond Ising model along the 

Nishimori line [3]. That is, with the Nishimori condition tanh 𝛽 = 1 − 2𝑝 , sampling bond 

configuration according to the partition function 𝒵𝑥𝒆 , is equivalent to having anti-ferromagnetic bond 

according to the binomial distribution with probability 𝑝, followed by gauge transformation 𝑥𝑒 →
𝑥𝑒 ς𝑣∈𝑒 𝜎𝑣 with 𝜎𝑣 = ±1 on every site.

FIG. 1. Tensor formalism for the Ising model partition 

function. (a) A tensor network for 5 × 5 system, with 

𝐿 + 1 2 = 36 local tensors. Each tensor encodes the 

interaction between 4 Ising spins, with each leg 

containing the local spin degree of freedom (𝑑 = 2). The 

dashed lines represent the original lattice. (b) The Levin-

Wen scheme in the tilted square lattice. Here 𝐿 is a 

multiple of 5, and we divide the system into a 5 × 5 grid, 

and choose the subregions as depicted, similar to Ref. [4].

However, for small error rate 𝑝, the direct sampling of the above form is exponentially hard, because 

the square root term is around 1 only for exponentially small portion of the total configurations, and 0 

otherwise.

We tackle this problem with the TMC algorithm, by combining the non-equilibrium Monte Carlo 

sampling to convert the exponential observables to a uniform work done, with tensor contraction to 

compute each partition function.

Consider

𝑄 𝜆 = 

𝑥𝒆,𝑥𝒆
′

𝒵𝑥𝒆 𝒵𝑥𝒆
′

𝒵𝑥𝐴
′ ,𝑥𝐵

𝒵𝑥𝐴,𝑥𝐵
′

𝒵𝑥𝐴,𝑥𝐵
𝒵𝑥𝐴

′ ,𝑥𝐵
′

𝜆/2

= 

𝑥𝒆,𝑥𝒆
′

𝒵𝑥𝒆 𝒵𝑥𝒆
′ 𝑔 𝑥𝒆, 𝑥𝒆

′ , 𝜆

as the partition function connecting the numerator and denominator in the above equation of trace. 

From Jarzynski equality [5], the exponential of free energy difference equals the weighted average of 

the exponential of the work done over all realizations bringing the system from 𝑄 0  to 𝑄 1 :

𝑒−𝑆2 =
𝑄 1

𝑄 0
= 𝑒ΔF = 𝑒𝑊 , with

𝑊 = න
0

1

d𝜆
𝜕 ln 𝑔 𝑥𝒆, 𝑥𝒆

′ , 𝜆

𝜕𝜆
= න

0

1

d𝜆 ln
𝒵𝑥𝐴

′ ,𝑥𝐵
𝒵𝑥𝐴,𝑥𝐵

′

𝒵𝑥𝐴,𝑥𝐵
𝒵𝑥𝐴

′ ,𝑥𝐵
′

The observable now is log of the original square root term which has a much better distribution and 

can be sample well in polynomial time.

At each Monte Carlo step, one samples bond configurations in two replicas according to 𝑄 𝜆 , 

gradually tunes 𝜆 from 0 to 1, and records the work done d𝑊. To find the acceptance ratio and 

perform the measurement, Ising partition functions need to be evaluated, and they are carried out by 

contracting corresponding tensor shown in Fig. 1. (a).
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