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 Our findings reveal that (1) For the (2 + 1)d O(3) Wilson-Fisher | | transition points (QCPs). The detailed scaling behavior 2 ALT(;I,VED minimal
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‘ N >N . i i order QsL FIG.1 (a) Lower bound for s.(6) for a CFT, adapted
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(2+1)d 0(3) QCP ************************** 1 TAB.1 The scaling behavior of EE at different scenarios. respectively.

FIG. 4 (a) lattice FIG. 3: (a) lattice of JQ model. (b) EE for smooth boundary cut. The black line is fitted from Eq. @ directly. (c) The subtracted EE versus
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EJ(S,Z) J:Jaz%ag:odz,. We study the SU(N) spin model defined in a Hilbert space of N local states (colors) at each site of the square

i . : : ] J Q .
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q=0/Q+]) critical N, ~ 8 below which s.() # 0 and s.(/2) = 0 at DQCPs, which violates the CFT constraint.
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| wblatticeA  sublattice B Q=0atN>s5. below N, cannot be described by a CFT and thus are not continuous phase transition. Transitions above N,
3 are possible candidates for the genuine DQCPs.
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! FIG. 5: Smooth cut: (a) EE minus the leading contribution such that the slope reflects the sub- FIG. 6: Corner cut: (a) EE minus the leading contribution such that the slope reflects the sub-leading coefficient s. (b) The fitted s from |
1 leading coefficient s. (b) The fitted s from data in (a) with respect to the smallest retained system data in (a) with respect to the smallest retained system size 1/L,,;, in the fitting process. (c) The change of corner log-coefficient as a i
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