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We explore the finite size scaling behavior of Rényi entanglement 

entropy (EE) in various two-dimensional quantum many-body 

systems, focusing on the nature of quantum phase transitions, 

particularly the deconfined quantum critical point (DQCP) ①②. 

Our findings reveal that (1) For the (2 + 1)d O(3) Wilson-Fisher 

QCP, we observe logarithmic corrections at sharp corners but not 

for smooth boundaries. (2) In the context of DQCP, specifically 

the square-lattice SU(N) models, we demonstrate that anomalous 

logarithmic correction from smooth boundary cut persists for N 

below a critical threshold 𝑁𝑐 , indicating that these transitions do 

not belong to conformal fixed points. For N above this threshold 

(between 7 and 8), the DQCPs align with conformal fixed points, 

describable by Abelian Higgs field theories. (3) For the corner cut, 

we observe no logarithmic correction for 𝑁 < 𝑁𝑐 but universal 

logarithmic corrections consistent with the free gaussian value for 

𝑁 > 𝑁𝑐 . 

Main results

d=1 CFT 𝑆 ∼ 𝑐ln(𝑙) Heisenberg chain

d=2 QCP 𝑺 ∼ 𝒂𝒍 − 𝒔𝒄𝐥𝐧(𝒍) − 𝒃 O(N) Wilson-Fisher

SSB 𝑆 ∼ 𝑎𝑙 + 𝑠𝐺ln(𝑙) Neel phase, Superfluid

Topological 

order

𝑆 ∼ 𝑎𝑙 − 𝛾𝑡𝑜𝑝 𝑍2 top. order, Kitaev 

QSL

Fermi surface 𝑆 ∼ 𝑙 ln 𝑙 + 𝑎𝑙 − ⋯ Free fermion

The scaling of EE (𝑆 = 𝑎𝑙 − 𝑠 ln 𝑙 − 𝑏 ❶) follows the 

“area law” with the leading order be the “area” of the 

entanglement boundary. The logarithmic sub-leading 

term encodes universal information at quantum phase 

transition points (QCPs). The detailed scaling behavior 

is summarized in TAB.1. In our work, we focus on the 

d=2 QCP case and study the sub-leading log-correction 

𝑠𝑐(𝜃) comes from the geometric sharp corners of 

entanglement region. The positivity criteria of 𝑠𝑐(𝜃) can 

help to distinguish non-CFT QCPs.
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Scaling behavior of EE

(2+1)d O(3) QCP

FIG.1 (a) Lower bound for 𝑠𝑐(𝜃) for a CFT, adapted 

from FIG.2 in P. Bueno, PRB 93, 045131. (b) and (c)

shows the lattice bipartition for 𝜃 = 𝜋  and 𝜋/2
respectively.
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TAB.1 The scaling behavior of EE at different scenarios.  

The (2+1)d O(3) phase transition 

can be realized in a bilayer 

Heisenberg model defined on a 

bilayer square lattice with nearest-

neighbor antiferromagnetic intra-

layer coupling 𝐽  and inter-layer 

coupling 𝐽⊥, as shown in FIG. 2 

(a). The slope of subtracted EE 

𝑆𝐴
2

2𝑙 − 2𝑆𝐴
2

𝑙 versus ln 𝑙

represents the magnitude of 𝑠𝑐(𝜃).

As shown in (d), for the smooth 

boundary at QCPs, we get 

𝑠𝑐 𝜋 = 0 , for four π/2 corners 

we get previously determined 

value ~0.08. 

FIG. 2: (a) lattice of bilayer Heisenberg model. (b) EE for both smooth boundary and 

boundary with corners for different boundary lengths. The black line is fitted from Eq. ❶ 
directly. (c) The subtracted EE versus ln 𝑙. (d) The fitted 𝑠 from data in (c) with respect to 

the smallest retained system size 1/𝐿𝑚𝑖𝑛 in the fitting process. 

SU(2) DQCP with smooth cut

If the DQCP is indeed a unitary CFT, the coefficient 𝑠  of the 

logarithmic correction must follow the constraint 𝑠𝑐 𝜋 = 0. We 

measure the 2nd Rényi EE in both the J-Q2 and J-Q3 model with the 

following Hamiltonians and the lattice is shown in FIG.3 (a), 

𝐻𝐽−𝑄2
= −𝐽 σ⟨𝑖𝑗⟩ 𝑃𝑖𝑗  − 𝑄 σ⟨𝑖𝑗𝑘𝑙⟩ 𝑃𝑖,𝑗𝑃𝑘,𝑙  

𝐻𝐽−𝑄3
= −𝐽 σ⟨𝑖𝑗⟩ 𝑃𝑖𝑗  − 𝑄 σ⟨𝑖𝑗𝑘𝑙𝑚𝑛⟩ 𝑃𝑖,𝑗𝑃𝑘,𝑙 𝑃𝑚,𝑛 

where 𝑃𝑖𝑗 is the two-spin singlet projector. A DQCP is reached via 

increasing Q from the Néel ordered state. At DQCP, subtracted EE 

exhibits linear scaling against ln 𝑙. The fitted slope of FIG.3 (c) with 

all available data points is found to be 𝑠 = −0.224(5) for the J-Q3 

model and 𝑠 = −0.289(6) for the J-Q2 model. We have also examined 

the effect of changing 𝐿𝑚𝑖𝑛. As shown in the inset of FIG. 3(b) and 

FIG. 3 (d), 𝑠 for the DQCP in the J-Q3 model seems stable against 

𝐿𝑚𝑖𝑛 , while the one for the J-Q2 model drifts slightly as 𝐿𝑚𝑖𝑛 

increases. Our results show that even for subregions without sharp 

corners, within the available system size, the scaling of Rényi EE at 

the Néel-to-VBS DQCP still has a logarithmic correction to the 

leading perimeter law scaling.

FIG. 3: (a) lattice of JQ model. (b) EE for smooth boundary cut. The black line is fitted from Eq. ❶ directly. (c) The subtracted EE versus 

ln 𝑙. (d) The fitted 𝑠 from data in (c) with respect to the smallest retained system size 1/𝐿𝑚𝑖𝑛 in the fitting process. 

 a 

   

      

             el    er  r        a e

𝑆 𝐴
2

/
𝑙

1/𝑙

𝑆 𝐴
2

2
𝑙

−
2

𝑆 𝐴
2

𝑙

ln𝑙 1/𝐿𝑚𝑖𝑛

𝑠

1/𝐿𝑚𝑖𝑛

𝑠

 a 

   

      

  el        

𝑆 𝐴
2

/𝑙
1/𝑙

𝑆 𝐴
2

2
𝑙

−
2

𝑆 𝐴
2

𝑙

ln𝑙 1/𝐿𝑚𝑖𝑛

−
𝑠

1/𝐿𝑚𝑖𝑛

−
𝑠

JQ2

JQ3

SU(N) DQCP

   la    e     la    e  

 a    

   

         
 

 

 

 

 

 

  el

   

 

  

 a     (a)

SU(2)

SU(3)

SU(5)

SU(7)

(b) (c)

We study the SU(N) spin model defined in a Hilbert space of 𝑁 local states (colors) at each site of the square 

lattice as show in FIG. 4 (a) with 𝐻 = −
𝐽1

𝑁
σ 𝑖𝑗 𝑃𝑖𝑗 −

𝐽2

𝑁
σ⟨⟨𝑖,𝑗⟩⟩ Π𝑖𝑗 −

𝑄

𝑁2
σ 𝑖𝑗𝑘𝑙 𝑃𝑖𝑗𝑃𝑘𝑙. Our data find a 

critical 𝑁𝑐 ≈ 8 below which 𝑠𝑐 𝜋 ≠ 0 and 𝑠𝑐 𝜋/2 = 0 at DQCPs, which violates the CFT constraint. 

Above 𝑁𝑐 , we find 𝑠𝑐 𝜋 = 0 and 𝑠𝑐 𝜋/2 ∝ Gaussion value + 𝑐𝑜𝑛𝑠𝑡. Therefore, we conclude that DQCP 

below 𝑁𝑐 cannot be described by a CFT and thus are not continuous phase transition. Transitions above 𝑁𝑐

are possible candidates for the genuine DQCPs.

FIG. 4: (a) lattice 

of SU(N) J1J2Q 

model. (b) The 

phase diagram of 

SU(N) J1J2Q model. 

DQCP is reached 

by either tunning 

𝑞 = 𝑄/(𝑄 + 𝐽1)  

with 𝐽2 = 0 at 𝑁 <
5 or 𝑔 = 𝐽1/𝐽2 with 

𝑄 = 0 at 𝑁 ≥ 5.

FIG. 5: Smooth cut: (a) EE minus the leading contribution such that the slope reflects the sub-

leading coefficient 𝑠. (b) The fitted 𝑠 from data in (a) with respect to the smallest retained system 

size 1/𝐿𝑚𝑖𝑛 in the fitting process. 

FIG. 6: Corner cut: (a) EE minus the leading contribution such that the slope reflects the sub-leading coefficient 𝑠. (b) The fitted 𝑠 from 

data in (a) with respect to the smallest retained system size 1/𝐿𝑚𝑖𝑛 in the fitting process. (c) The change of corner log-coefficient as a 

function of 𝑁. The black line is 𝑠 =  .    8× × 2𝑁 + 𝑐𝑜𝑛𝑠𝑡, where 0.00648 is the value for a free scalar field at a single 90° corner.
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