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Introduction

The continuous transition between fractional Chern insulator (FCI) and superfluid (SF)
has been predicted by field theoretical studies, and it could be an example of transitions
beyond the Landau-Ginzburg paradigm. Experimentally, it has been proposed as a
scheme to (quasi)adiabatically prepare the FCI from SF in such as cold-atom
experiments.
However, the existing numerical results of FCI-SF transition are either indirect or clearly
first-order. Further, recent experimentally realized FCIs are only prepared from localized
states instead of SF.

Extended Haldane model

• Hard-core bosons on honeycomb lattice
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where b†
i (bi) creates (annihilates) a hard-core boson at the i -th site. We consider a

zigzag geometry as shown in Fig. 1 (a) and set nearest-neighbor (NN) t = 1,
next-nearest-neighbor (NNN) t′ = 0.6, next-next-nearest-neighbor (NNNN)
t′′ = −0.58 and ϕ = 0.4π, which are found as optimal flat-band parameters in this
model and the Chern bands at this setting are shown in Fig. 1 (b). In this work, we focus
on fixed t and t′ while tune only t′′ to control the bandwidth of the lower band. V1

(V2) refers to the amplitude of NN (NNN) repulsive interactions.

• Method

We mainly use the density matrix renormalization group (DMRG) method for
simulations. We also conduct exact diagonalization (ED) simulations in this work and
the results are in agreement with those of DMRG.

Results

• Phase diagram with V1 = V2 = 0
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Fig 1: Model and phase diagram. (a) The honeycomb lattice with zigzag geometry (N = 3 × 3 × 2 for
example here), where blue(red) sites refer to A(B) sublattice respectively. (b) The single-particle energy bands
with the flat-band parameters in Eq. (1). We show the contour plot of the lower single-particle Chern band
with (c) t′′ = −1 and (d) t′′ = 0, which are dispersive. The energy minimum is at (c) M point and (d) Γ
point respectively. Boson occupation n(k) in the Brillouin zone (BZ) with (e) t′′ = −1 and (f) t′′ = 0 from
DMRG simulations of a 6× 18× 2 cylinder. In the two SF phases, the condensed momenta are in agreement
with the single-particle energy minima. The red dotted lines in (c-f) represent the first BZ. (g) Phase diagram
when the lower Chern band is half filled with hard-core bosons when tuning t′′ with V1 = V2 = 0. The gray
solid line represents a first-order FCI-SF(M) transition, while the gray dashed line represents the continuous
FCI-SF(Γ) transition.

With more supporting data in Fig. 2, we have found a continuous FCI-SF(Γ) transition
by tuning the band dispersion, while the FCI-SF(M) transition turns out to be first-order.
The difference of the two transitions by tuning the same parameter might be that the
SF(M) state breaks not only the U(1) symmetry but also the C3 rotation symmetry.
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Fig 2: Nature of the quantum phase transitions. The DMRG results of (a) per-site energy derivative ∂E
∂t′′, boson

occupations at the (b) M point and (c) Γ point in the BZ, as a function of t′′ from cylinders up to Ny = 10, are
shown. We use the grey solid and dashed lines determined from DMRG results to label the first-order FCI-SF(M)
transition and the continuous FCI-SF(Γ) transition respectively as in Fig.1(g). (d) The entanglement entropy at the
critical point t′′ = −0.495.

The entanglement entropy from DMRG simulations at the critical point exhibits the area law
scaling without the log(x) term, which is in agreement with the 2D critical boson nature.

• Criticality analysis
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Fig 3: Finite-size criticality analysis of FCI-SF(Γ) transition. (a) Rescaled per-site occupation at Γ point of
the BZ n(Γ)/N ′ as a function of t′′, which show good crossing at t′′c ≈ −0.495. (b) Scaling collapse obtained by
plotting L2β/νn(Γ)/N ′ as a function of L1/ν(t′′ − t′′c )/|t′′c |. The critical exponents in (a) and (b) are from (c),
which shows the loss function of data collapse with changing β and ν, defined as the squared deviation of the fitted
scaling function away from the data points. With t′′c ≈ 0.495, the optimal critical exponents exist in a range of
parameter space with β ≈ 0.35(5) and ν ≈ 0.62(12), denoted by the deep blue contour, which is from the nearest
extremum of the loss function gradient. The pink triangle labels the exponents used in (a) and (b), while the green
circle labels the critical exponents of the 3D XY universality class, with which we further show the data collapse in (d).

Limited by the finite size and cylinder geometry in our DMRG simulations, whether the exact
values of the exotic FCI-SF(Γ) transition should deviate from those of the 3D XY universality class
might need more accuarate simulations.

• Continuous FCI-SF(Γ) transition with neighboring interactions
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Fig 4: (a) The V1(V2)-t′′ phase diagram with a fixed V2 = 0.375V1 and the continuous transition is robust against
V1/V2 (further increasing interaction would lead to phase transitions even at the flat-band parameter). (b) The
second-order energy derivative at V1 = 2.4 and V2 = 0.9 as an example (different colors represent Ny frm 4 to 10).

Discussions

• It is interesting to further investigate the continuous FCI-SF(Γ) transition, including the more
precise critical exponents and possible emergent symmetry at critical point.

• As the first numerical discovery of this continuous transition, this might provide more
perspectives for preparing FCIs in ultra-cold experiments.
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