Zi Yang Meng and Fakher F. Assaad Exotic quantum matter from quantum spin liquids to novel field theories, Pollica 26 June 2024

<u>Outline</u>

Quantum Monte Carlo

Applications

Dynamical properties of quantum magnets

Z₂ and U(1) spin liquids

Kitaev materials

Heavy fermions

•••••

Quantum Monte Carlo

$$Z = \mathrm{Tr} e^{-\beta \hat{H}} = \sum_{C} W(C)$$

1.
$$W(C) > 0$$

- 2. Distribution has no fat tails
- 3. One can generate N independent configurations with probability

-200

 Q^2

Then:

If:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\langle O \rangle_P = \sum_C P(C)O(C) \simeq \frac{1}{N} \sum_{i=1}^N O(C_i) = X$$
$$\mathcal{P}(X) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left[-\frac{(X - \langle O \rangle_P)^2}{2\sigma^2}\right] \text{ with } \sigma^2 = \frac{1}{N} \left(\langle O^2 \rangle_P - \langle O \rangle_P^2\right).$$

Quantum Monte Carlo: Sign problem

$$\langle O \rangle = \frac{\sum_{C} W(C)O(C)}{\sum_{C} W(C)} = \frac{\frac{\sum_{C} |W(C)| \frac{W(C)}{|W(C)|} O(C)}{\sum_{C} |W(C)|}}{\frac{\sum_{C} W(C)}{\sum_{C} |W(C)|}}$$

Julius-Maximilians-

UNIVERSITÄ

WÜRZBURG

$$\frac{W(C)}{|W(C)|} = \operatorname{sign}(C) \qquad \langle \operatorname{sign} \rangle = \frac{\sum_{C} W(C)}{\sum_{C} |W(C)|} \propto e^{-\alpha\beta V} \qquad \frac{\Delta \langle \operatorname{sign} \rangle}{\langle \operatorname{sign} \rangle} \ll 1 \qquad \text{CPU time } \propto e^{2\alpha\beta V}$$

```
Solution ?Change methods (DMRG and co \rightarrow Frank's discussion)Change formulation so as to minimize \alpha (Polynomial sign problem in flat bands)Confront the sign problem (Lefschetz thimbles and Complex Langevin QCD)Go approximative (Fixed node QMC in real or slater determinant space)......
```

QMC examples (successful & unsuccessful) in quantum magnets

Pride and Prejudice

ZI YANG MENG & FAKHER ASSAAD

QMC examples (successful & unsuccessful) in quantum magnets

Pride and Prejudice

ZI YANG MENG & FAKHER ASSAAD

Model-Design and Numerical Simulations

- Magnetic phase transitions and Dynamical properties (amplitude mode)
- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/Cl and SCBO
- Polynomial Sign problem
-

Magnetic phase transitions and amplitude mode

Pressure (kbar)

P. Merchant, B. Normand, K. W. Kramer, M. Boehm, D. F. McMorrow, and C. Ruegg, Nat. Phys. 10, 373 (2014).

 $g_c \approx 4.837$

Magnetic phase transitions and amplitude mode

 $S(\mathbf{q},\tau) = \langle S^{z}_{-\mathbf{q}}(\tau) S^{z}_{\mathbf{q}}(0) \rangle,$

 $D(\mathbf{\Gamma}, \tau) = \langle B_{\Gamma}(\tau) B_{\Gamma}(0) \rangle,$

 $S_{\mathbf{q}}^{z} = \frac{1}{\sqrt{N}} \sum_{\mathbf{r}} e^{-i\mathbf{q}\cdot\mathbf{r}} (S_{r}^{1z} - S_{r}^{2z})$

 $D(\Gamma, \omega) \sim \Delta_H^{d+z-2/\nu} \Phi(\omega/\Delta_H),$

 $B_{\Gamma} = \frac{1}{\sqrt{N}} \sum_{r} B_{r} = \mathbf{S}_{r}^{1} \cdot \mathbf{S}_{r}^{2} - \langle \mathbf{S}_{r}^{1} \cdot \mathbf{S}_{r}^{2} \rangle$

PRL 118, 147207 (2017)

PHYSICAL REVIEW LETTERS

Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets

Yan Qi Qin,¹ B. Normand,² Anders W. Sandvik,³ and Zi Yang Meng¹

Scaling of the scalar susceptibility

10

 ω/J

15

(b)

20

D. Podolsky and S. Sachdev, Phys. Rev. B 86, 054508 (2012).

5

0.5

0.0

0

S. Gazit, D. Podolsky, and A. Auerbach, Phys. Rev. Lett. 110, 140401 (2013).

M. Lohöfer and S. Wessel, Phys. Rev. Lett. 118, 147206 (2017).

Spectra in dimension crossover

PHYSICAL REVIEW LETTERS 126, 227201 (2021)

Amplitude Mode in Quantum Magnets via Dimensional Crossover

Chengkang Zhou,¹ Zheng Yan,^{1,2} Han-Qing Wu,³ Kai Sun,^{4,*} Oleg A. Starykh⁰,^{5,†} and Zi Yang Meng^{1,‡}

$$H = J \sum_{\langle i,j \rangle_{\mathbf{x}}} \mathbf{S}_i \cdot \mathbf{S}_j + J_{\perp} \sum_{\langle i,j \rangle_{\mathbf{y}}} \mathbf{S}_i \cdot \mathbf{S}_j - h \sum_i (-1)^i S_i^z,$$

QMC+ chain-mean-field of sine-Gorden

Spectra in dimension crossover

PHYSICAL REVIEW LETTERS 126, 227201 (2021)

Amplitude Mode in Quantum Magnets via Dimensional Crossover

Chengkang Zhou,¹ Zheng Yan,^{1,2} Han-Qing Wu,³ Kai Sun,^{4,*} Oleg A. Starykh⁰,^{5,†} and Zi Yang Meng^{1,‡}

$$H = J \sum_{\langle i,j \rangle_{\mathbf{x}}} \mathbf{S}_i \cdot \mathbf{S}_j + J_{\perp} \sum_{\langle i,j \rangle_{\mathbf{y}}} \mathbf{S}_i \cdot \mathbf{S}_j - h \sum_i (-1)^i S_i^z$$

QMC+ chain-mean-field of sine-Gorden

Model-Design and Numerical Simulations

Magnetic phase transitions and Dynamical properties

- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/Cl and SCBO
- Polynomial Sign problem
-

 $h = 0, m_{z} = 0$

 J_{\pm}/J_z

FM

0.08

 $h = 2J_{z}, m_{z}$

FM

0.07

(c)

VBS

VBS

0.05

VBS

QSI

VBS

QSL

0.06

(d)

 J'_z/J_z

0.00 10.0 - 20.0

 J'_z/J_z

0.01 0.02

S

-0.01

0.01 0.02

Kagome quantum spin liquid

Fractionalization in an easy-axis Kagome antiferromagnet

L. Balents,¹ M. P. A. Fisher,² and S. M. Girvin^{2,3}

(a)

(b)

 b_2

PHYSICAL REVIEW LETTERS 121, 077201 (2018)

Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets

Guang-Yu Sun,^{1,2} Yan-Cheng Wang,³ Chen Fang,^{1,4} Yang Qi,^{5,6,7} Meng Cheng,⁸ and Zi Yang Meng^{1,4}

$$H = -J_{\pm} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + \text{H.c.}) + \frac{J_z}{2} \sum_{\bigcirc} \left(\sum_{i \in \bigcirc} S_i^z \right)^2 + J_z' \sum_{\langle i,j \rangle'} S_i^z S_j^z - h \sum_i S_i^z,$$

$$S^{\pm}_{\alpha\beta}(\mathbf{q},\tau) = \langle S^{+}_{-\mathbf{q},\alpha}(\tau) S^{-}_{\mathbf{q},\beta}(0) \rangle, \quad S^{zz}_{\alpha\beta}(\mathbf{q},\tau) = \langle S^{z}_{-\mathbf{q},\alpha}(\tau) S^{z}_{\mathbf{q},\beta}(0) \rangle$$

Kagome quantum spin liquid

PHYSICAL REVIEW LETTERS 121, 077201 (2018)

Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets

Guang-Yu Sun,^{1,2} Yan-Cheng Wang,³ Chen Fang,^{1,4} Yang Qi,^{5,6,7} Meng Cheng,⁸ and Zi Yang Meng^{1,4}

$$H = -J_{\pm} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + \text{H.c.}) + \frac{J_z}{2} \sum_{\bigcirc} \left(\sum_{i \in \bigcirc} S_i^z \right)^2 + J_z' \sum_{\langle i,j \rangle'} S_i^z S_j^z - h \sum_i S_i^z,$$

Translation symmetry fractionalisation

$$T_1^{(a)}T_2^{(a)} = -T_2^{(a)}T_1^{(a)},$$

(a)

S. V. Isakov, R. G. Melko, and M. B. Hastings, Science 335, 193 (2012).

Kagome quantum spin liquid

PHYSICAL REVIEW LETTERS 121, 077201 (2018)

Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets

Guang-Yu Sun,^{1,2} Yan-Cheng Wang,³ Chen Fang,^{1,4} Yang Qi,^{5,6,7} Meng Cheng,⁸ and Zi Yang Meng^{1,4}

$$H = -J_{\pm} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + \text{H.c.}) + \frac{J_z}{2} \sum_{\bigcirc} \left(\sum_{i \in \bigcirc} S_i^z \right)^2 + J_z' \sum_{\langle i,j \rangle'} S_i^z S_j^z - h \sum_i S_i^z,$$

Translation symmetry fractionalisation

$$T_1^{(a)}T_2^{(a)} = -T_2^{(a)}T_1^{(a)},$$

S. V. Isakov, R. G. Melko, and M. B. Hastings, Science 335, 193 (2012).

¥.-C. Wang, X.-F. Zhang, F. Pollmann, M. Cheng, Z.Y. Meng, Phys. Rev. Lett. 121, 057202 (2018).

Kagome quantum spin liquid

Fractionalized conductivity and emergent selfduality near topological phase transitions

Yan-Cheng Wang ^[1], Meng Cheng², William Witczak-Krempa ^[5] ^{3,4} & Zi Yang Meng ^[5]

$$H = -t \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + \text{h.c.}) + V \sum_{\bigcirc} \left(\sum_{i \in \bigcirc} n_i \right)^2 + V' \sum_{\langle i,j \rangle'} n_i n_j + \mu \sum_i n_i$$

22

Particle-like conductivity Vortex-like conductivity Particle-Vortex duality at the scale of T*

Kagome quantum spin liquid Cu3Zn(OH)6FBr

CHIN. PHYS. LETT. Vol. 34, No. 7 (2017) 077502 Express Letter

Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound $Cu_3Zn(OH)_6FBr^*$

Youguo Shi, Shiliang Li, Guo-qing Zheng ... in IOP, CAS

(b)

F has nuclear spin I=1/2

Kagome material YCu3-Br/Cl

Possible Dirac quantum spin liquid in the kagome quantum antiferromagnet $YCu_3(OH)_6Br_2[Br_x(OH)_{1-x}]$

Shiliang Li's group in IOP, CAS

YCu3-Cl YCu3-Br

Hering, M., Ferrari, F., Razpopov, A. et al.

Phase diagram of a distorted kagome antiferromagnet and application to Y-kapellasite. *npj Comput Mater* **8**, 10 (2022).

Kagome material YCu3-Br

 $YCu_{3}(OH)_{6}Br_{2}[Br_{(1-x)}(OH)_{x}](YCu_{3}-Br)$

https://doi.org/10.1038/s41567-024-02495-z

nature physics

Article

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zhenyuan Zeng^{1,2}, Chengkang Zhou³, Honglin Zhou[®]^{1,2}, Lankun Han^{1,2}, Runze Chi^{1,2}, Kuo Li⁴, Maiko Kofu[®]⁵, Kenji Nakajima[®]⁵, Yuan Wei⁶, Wenliang Zhang[®]⁶, Daniel G. Mazzone[®]⁷, Zi Yang Meng[®]³ & Shiliang Li[®]^{1,2,8}

Model-Design and Numerical Simulations

- Magnetic phase transitions and Dynamical properties
- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/CI and SCBO
- Polynomial Sign problem
-

Pyrochlore U1 spin ice

Pyrochlore photons: The U(1) spin liquid in a $S = \frac{1}{2}$ three-dimensional frustrated magnet

Michael Hermele,¹ Matthew P. A. Fisher,² and Leon Balents¹

PRL 108,	037202	(2012)
----------	--------	--------

PHYSICAL REVIEW LETTERS

week ending 20 JANUARY 2012

Coulombic Quantum Liquids in Spin-1/2 Pyrochlores

Lucile Savary^{1,2} and Leon Balents³

PHYSICAL REVIEW LETTERS 120, 167202 (2018)

Dynamics of Topological Excitations in a Model Quantum Spin Ice

Chun-Jiong Huang, 1,2,3 Youjin Deng, 1,2,3,* Yuan Wan, 4,5,† and Zi Yang Meng 5,6,‡

J.-P. Lv, G. Chen, Y. Deng, and Z. Y. Meng, Phys. Rev. Lett. 115, 037202 (2015).

Pyrochlore U1 spin ice

PHYSICAL REVIEW LETTERS 120, 167202 (2018)

 $S^{zz}_{\alpha\beta}(\mathbf{q},\tau) = \langle S^{z}_{-\mathbf{q},\alpha}(\tau) S^{z}_{\mathbf{q},\beta}(0) \rangle.$

- Y. Kato and S. Onoda, Phys. Rev. Lett. 115, 077202 (2015).
- L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).

M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).

A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys. Rev. Lett. 100, 047208 (2008).

M. J. P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77, 056501 (2014).

¥. Kato and S. Onoda, Phys. Rev. Lett. 115, 077202 (2015).

L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).

Model-Design and Numerical Simulations

- Magnetic phase transitions and Dynamical properties
- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/Cl and SCBO
- Polynomial Sign problem
-

PHYSICAL REVIEW X 9, 021022 (2019)

Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases

Xiao Yan Xu,^{1,*} Yang Qi,^{2-4,†} Long Zhang,⁵ Fakher F. Assaad,⁶ Cenke Xu,⁷ and Zi Yang Meng^{8,9,10,11,‡}

$$Z = \int D(\phi, \bar{\psi}, \psi) e^{-(S_{\phi} + S_F)} \quad S = S_F + S_{\phi} = \int_0^\beta d\tau (L_F + L_{\phi})$$
$$L_F = \sum_{\langle i,j \rangle \alpha} \psi_{i\alpha}^{\dagger} \left[(\partial_{\tau} - \mu) \delta_{ij} - t e^{i\phi_{ij}} \right] \psi_{j\alpha} + \text{h.c.},$$
$$L_{\phi} = \frac{4}{JN_f \Delta \tau^2} \sum_{\langle i,j \rangle} \left(1 - \cos(\phi_{ij}(\tau + 1) - \phi_{ij}(\tau)) \right) + \frac{1}{2} KN_f \sum_{\Box} \cos\left(\text{curl}\phi\right)$$

$$Z = \int D(\phi, \bar{\psi}, \psi) e^{-(S_{\phi} + S_F)} = \int D\phi e^{-S_{\phi}} \operatorname{Tr}_{\psi} \left[e^{-S_F} \right]$$

 $\operatorname{Tr}_{\psi}\left[e^{-S_{F}}\right] = \left[\det\left(I + \prod_{z=1}^{L_{\tau}} B_{z}\right)\right]^{N_{f}}$

PHYSICAL REVIEW X 9, 021022 (2019)

Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases

Xiao Yan Xu,^{1,*} Yang Qi,^{2-4,†} Long Zhang,⁵ Fakher F. Assaad,⁶ Cenke Xu,⁷ and Zi Yang Meng^{8,9,10,11,‡}

PHYSICAL REVIEW X 9, 021022 (2019)

Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases

Xiao Yan Xu,^{1,*} Yang Qi,^{2-4,†} Long Zhang,⁵ Fakher F. Assaad,⁶ Cenke Xu,⁷ and Zi Yang Meng^{8,9,10,11,‡}

PHYSICAL REVIEW X 9, 021022 (2019)

Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases

Xiao Yan Xu,^{1,*} Yang Qi,^{2-4,†} Long Zhang,⁵ Fakher F. Assaad,⁶ Cenke Xu,⁷ and Zi Yang Meng^{8,9,10,11,‡}

Monopole proliferation leads to confinement of gauge field

Wei Wang, et. al. PRB 100, 085123 (2019)

J=0 (π,π) (0,0)J=2.0 (π,π) (0,0)J=3.1 (π,π) (0,0)J=4.5

(0,0)

(π,0)

(0,0)

(π,π)

PHYSICAL REVIEW B 101, 235118 (2020)

Confinement transition in the QED₃-Gross-Neveu-XY universality class

Lukas Janssen[®],¹ Wei Wang[®],^{2,3} Michael M. Scherer,⁴ Zi Yang Meng,^{2,5,6} and Xiao Yan Xu[®]⁷

Model-Design and Numerical Simulations

- Magnetic phase transitions and Dynamical properties
- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/CI and SCBO
- Polynomial Sign problem

Kagome material YCu3-Br/Cl

 $YCu_{3}(OH)_{6}[(Cl_{x}Br_{1-x})_{3-y}(OH)_{y}](YCu_{3}-Br/Cl)$

Kagome material YCu3-Br

 $YCu_{3}(OH)_{6}Br_{2}[Br_{(1-x)}(OH)_{x}](YCu_{3}-Br)$

https://doi.org/10.1038/s41567-024-02495-z

nature physics

Article

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zhenyuan Zeng^{1,2}, Chengkang Zhou³, Honglin Zhou[®]^{1,2}, Lankun Han^{1,2}, Runze Chi^{1,2}, Kuo Li⁴, Maiko Kofu[®]⁵, Kenji Nakajima[®]⁵, Yuan Wei⁶, Wenliang Zhang[®]⁶, Daniel G. Mazzone[®]⁷, Zi Yang Meng[®]³ & Shiliang Li[®]^{1,2,8}

SCBO Experiment

(a) O Si

O C

(c)

PHYSICAL REVIEW LETTERS 124, 206602 (2020)

(b) DS (c) DS(c) DS(d) AF(d) AF(c) DS(e) DS(f) Quantum Phases of SrCu₂(BO₃)₂ from High-Pressure ThermodynamicsJing Guo@,¹ Guangyu Sun@,^{1,2} Bowen Zhao@,³ Ling Wang@,^{4,5} Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁶ Nvsen Ma,¹Qi Wu,¹ Shiliang Li,^{1,2,7} Zi Yang Meng@,^{1,8,7,*} Anders W. Sandvik@,^{3,1,†} and Liling Sun@^{1,2,7,‡}10 o sr10 o cu

- P < 1.8 GPa: Dimer-singlet state
- P < 2.5GPa: Plaquette-singlet state
- 3 GPa < P < 4 GPa: AF state</p>

SCBO Experiments

arXiv:2310.20128

Deconfined quantum critical point lost in pressurized SrCu₂(BO₃)₂

Jing Guo,^{1,5,*} Pengyu Wang,^{1,2,*} Cheng Huang,^{3,*} Bin-Bin Chen,³ Wenshan Hong,^{1,2} Shu Cai,⁴ Jinyu Zhao,^{1,2} Jinyu Han,^{1,2} Xintian Chen,^{1,2} Yazhou Zhou,¹ Shiliang Li,^{1,2,5} Qi Wu,¹ Zi Yang Meng,^{3,†} and Liling Sun^{1,2,4,5,‡}

Simulation

PHYSICAL REVIEW LETTERS 124, 206602 (2020)

Jing Guo^(a),¹ Guangyu Sun^(a),^{1,2} Bowen Zhao^(a),³ Ling Wang^(a),^{4,5} Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁶ Nvsen Ma,¹ Qi Wu,¹ Shiliang Li,^{1,2,7} Zi Yang Meng^(a),^{1,8,7,*} Anders W. Sandvik^(a),^{3,1,†} and Liling Sun^(a),^{1,2,7,‡}

Chin. Phys. B Vol. 30, No. 6 (2021) 067505

Guangyu Sun(孙光宇)^{1,2}, Nvsen Ma(马女森)^{3,1}, Bowen Zhao(赵博文)⁴, Anders W. Sandvik^{4,1,†}, and Zi Yang Meng(孟子杨)^{1,5,‡}

Model-Design and Numerical Simulations

- Magnetic phase transitions and Dynamical properties
- Kagome models and Z2 quantum spin liquid (BFG)
- Pyrochlore models and U1 quantum spin liquid (Quantum Spin ice)
- Dirac fermion/spinon coupled with U1 gauge field
- YCu3-Br/CI and SCBO
- Polynomial Sign problem in TBG

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Fakher F. Assaad, Exotic quantum matter from quantum spin liquids to novel field theories, Pollica 26 June 2024

PHYSICAL REVIEW B 104, L081106 (2021)

Letter

Julius-Maximilians-

Quantum Monte Carlo simulation of generalized Kitaev models

Toshihiro Sato¹ and Fakher F. Assaad^{1,2} ¹Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany ²Würzburg-Dresden Cluster of Excellence ct.qmat, Am Hubland, 97074 Würzburg, Germany

arXiv:2312.03080v1

Scale-invariant magnetic anisotropy in α -RuCl₃: A quantum Monte Carlo study

Toshihiro Sato,^{1,2} B. J. Ramshaw,^{3,4} K. A. Modic,⁵ and Fakher F. Assaad^{1,6}

T. Sato

K. Modic

B. Ramshaw

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Fermion QMC

Let
$$\hat{H} = \hat{H}_0 - \lambda \sum_n \left(\hat{c}^{\dagger} O^{(n)} \hat{c} \right)^2$$
 with $O^{(n)} = O^{(n),\dagger}$

$$Z = \int D\left\{\Phi(n,\tau)\right\} \ e^{-S(\Phi(n,\tau))}$$
$$S(\Phi(n,\tau)) = \sum_{n,\tau} \Phi^2(n,\tau)/2 - \log \underbrace{\prod_{\tau=1}^{L_{\tau}} \left(e^{-\Delta\tau \hat{H}_0} \prod_n e^{\sqrt{2\Delta\tau\lambda}\Phi(n,\tau)\hat{c}^{\dagger}O^{(n)}\hat{c}}\right)}_{\det[M(\Phi(n,\tau))]} \qquad \qquad L_{\tau}\Delta\tau = \beta$$

Is the determinant positive?

C. Wu and S.-C. Zhang. Phys. Rev. B, 71, 155115, (2005).
E. Huffman and S. Chandrasekharan, Phys. Rev. B 89 (2014), 111101.
Zi-Xiang Li, Yi-Fan Jiang, and H. Yao Phys. Rev. Lett. 117 (2016), 267002.
Z. C. Wei, C. Wu, Yi Li, Shiwei Zhang, and T. Xiang. Phys. Rev. Lett. 116 (2016), 250601.
Z. C. Wei, arXiv:1712.09412

R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24 (1981), 2278 J. E. Hirsch, Phys. Rev. B 31 (1985), 4403 White, D. Scalapino, R. Sugar, E. Loh, J. Gubernatis, and R. Scalettar, Phys. Rev. B 40 (1989), 506

WURESTITION
Auxiliary field quantum Monte Carlo for frustrated spin systems

$$\hat{H} = 2K \sum_{i \in A, \delta} \hat{S}_{i}^{\delta} \hat{S}_{i+\delta}^{\delta} + J \sum_{i \in A, \delta} \hat{S}_{i} \cdot \hat{S}_{i+\delta}.$$

$$K = A \sin(\varphi), \ J = A \cos(\varphi), \ A = \sqrt{K^{2} + J^{2}}$$
Simulating spins with fermions.

$$\hat{S}_{i}^{\delta} = \frac{1}{2} \sum_{s,s'} \hat{f}_{i,s}^{\dagger} \sigma_{s,s'}^{\delta} \hat{f}_{i,s'}$$

$$\sum_{s} \hat{f}_{i,s}^{\dagger} \hat{f}_{i,s} = \hat{n}_{i} = 1$$

$$\hat{H}_{QMC} = |K| \sum_{i \in A, \delta} s_{\delta} \left(s_{\delta} \hat{S}_{i}^{\delta} + \frac{K}{|K|} \hat{S}_{i+\delta}^{\delta} \right)^{2} - \frac{J}{8} \sum_{i \in A, \delta} \left(\left[\hat{D}_{i,\delta}^{\dagger} + \hat{D}_{i,\delta} \right]^{2} + \left[i \hat{D}_{i,\delta} - i \hat{D}_{i,\delta}^{\dagger} \right]^{2} \right) + U \sum_{i} (\hat{n}_{i} - 1)^{2}$$

$$\hat{D}_{i,\delta}^{\dagger} = \sum_{s} \hat{f}_{i,s}^{\dagger} \hat{f}_{i+\delta,s}$$

$$S_{\delta} = \pm 1$$
Constraint commutes with Hamiltonian dynamics
$$\left[\hat{H}_{QMC}, (-1)^{\hat{n}_{s}} \right] = 0$$

J. Chaloupka, G. Jackeli, and G.Khaliullin Phys. Rev. Lett. 105 (2010), 027204.

A. Shekhter et al. PRB 2023

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Julius-Maximilians-

Scale-invariant magnetic anisotropy in RuCl₃ at high magnetic fields

K. A. Modic^{©12E3}, Ross D. McDonald[®]², J. P. C. Ruff⁴, Maja D. Bachmann²², You La^{124,2}, Johanna C. Palmstrom³, David Graf[®]³, Mun K. Chan[®]³, F. F. Balakirev[®]⁴, J. B. Betts², G. S. Boebinger⁶³, Marcus Schmidt², Michael J. Lawler⁸, D. A. Sokolov^{®2}, Philip J. W. Moll^{®23}, B. J. Ramshaw^{®4} and Arkady Shekhter^{®7}

Auxiliary field quantum Monte Carlo for frustrated spin systems

Julius-Maximilians-

RZBURG

UNIVERSITÄT

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Julius-Maximilians-

Auxiliary field quantum Monte Carlo for frustrated spin systems

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

RuCl₃ is proximate to the Kitaev model

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems WÜRZBURG

Julius-Maximilians-

RuCl₃ is proximate to the Kitaev model

$$\hat{H}_{XXZ} = \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} J \left[\hat{S}_{\boldsymbol{i}}^{x} \cdot \hat{S}_{\boldsymbol{j}}^{x} + \hat{S}_{\boldsymbol{i}}^{y} \cdot \hat{S}_{\boldsymbol{j}}^{y} \right] + \left[J + J_{z} \right] \hat{S}_{\boldsymbol{i}}^{z} \hat{S}_{\boldsymbol{j}}^{z}$$

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Julius-Maximilians-

ERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Torque fluctuations

Julius-Maximilians-

UNIV

$$\frac{\partial F}{\partial \varphi} = \mu_B \sum_{i} \hat{t}_i \text{ with } \hat{t}_i = (\mathbf{e} \times \mathbf{B}) \cdot \mathbf{g} \hat{\mathbf{S}}_i$$

$$\langle \hat{t}_r \hat{t}_0 \rangle - \langle \hat{t}_r \rangle \langle \hat{t}_0 \rangle = \sum_{\alpha,\beta} b_\alpha b_\beta \left(\hat{S}_r^\alpha \hat{S}_0^\beta \rangle - \langle \hat{S}_r^\alpha \rangle \langle \hat{S}_0^\beta \rangle \right)$$

$$\mathbf{b} = (\mathbf{e} \times \mathbf{B}) \cdot \hat{g}$$

$$(\mathbf{a}) \operatorname{RuCl_3 model} \qquad (\mathbf{b}) \operatorname{Kitaev model} \qquad (\mathbf{c}) \operatorname{XXZ model} \qquad (\mathbf{c}) \operatorname{XZ} \operatorname{MZ} \operatorname{MZ} \qquad (\mathbf{c}) \operatorname{XZ} \operatorname{MZ} \operatorname{MZ} \qquad (\mathbf{c}) \operatorname{XZ} \operatorname{MZ} \operatorname{MZ} \qquad (\mathbf{c}) \operatorname{XZ} \qquad$$

Low temperature magnetic anisotropy is that of a renormalized local magnetic moment Low lying excitations do not contribute to the magnetotropic susceptibility

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Next steps? Debye temperature ~ 200K Magnetic energy scale ~ 100K

Julius-Maximilians-

UNIVERSITÄT Auxiliary field quantum Monte Carlo for frustrated spin systems

Fakher F. Assaad, Exotic quantum matter from quantum spin liquids to novel field theories, Pollica 26 June 2024

Summary I

Julius-Maximilians-

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Dimensional mismatch Kondo systems

Toy models to realize **metallic** phases and phase transitions in Kondo systems (FL*, FL, LRO) without confronting the sign problem.

Kondo breakdown transitions and phases

B. Danu, M. Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Dissipation induced magnetic order-disorder transitions

B. Danu, M. Vojta, T. Grover FFA, Phys. Rev. B 106 (2022), L161103. M. Weber, D. J. Luitz, and FFA, Phys. Rev. Lett. 129 (2022), 056402.

Marginal Fermi liquid at magnetic quantum criticality from dimensional confinement

Zi Hong Liu, B. Frank, L. Janssen, M. Vojta, FFA, Phys. Rev. B 107, 165104 (2023) B. Frank, Zi Hong Liu, FFA, M. Vojta, and L. Janssen, Phys. Rev. B 108 (2023), L100405.

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j}
angle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + rac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}'
angle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

Julius-Maximilians-**UNIVERSITÄT** WÜRZBURG

Dimensional mismatch Kondo systems

Many thanks to...

B. Danu (Wü)

Z. Liu (TUD)

(TUD)

M. Weber N. (TUD)

M. Raczkowski (Wü)

S. Biswas (Wü)

T. Grover (UCSD) M. Vojta (TUD)

Center of excellence complexity and topology in quantum matter

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

L. Janssen (TUD)

D. Luitz (Bonn)

Kondo phase $J_k >> t$

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + \frac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

 $\boldsymbol{\hat{\Psi}}_i = \boldsymbol{\hat{S}}_i \cdot \boldsymbol{\sigma} \boldsymbol{\hat{c}}_i$

Emergent composite fermion that participates in Luttinger count

Spin-spin correlations inherit power-law of conduction electrons.

Weak-coupling J_k << t

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + \frac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

Integrate out electrons à la Hertz-Millis

$$\mathcal{S}(\boldsymbol{n}) = \mathcal{S}_{ ext{spin}}(\boldsymbol{n}) + \mathcal{S}_{ ext{diss}}(\boldsymbol{n}) + \cdots$$

$$\mathcal{S}_{\text{diss}}(\boldsymbol{n}) = \frac{J_k^2}{8} \int d\tau d\tau' \sum_{\boldsymbol{r},\boldsymbol{r}'} \boldsymbol{n}_{\boldsymbol{r}}(\tau) \chi^0(\boldsymbol{r} - \boldsymbol{r}', \tau - \tau') \boldsymbol{n}_{\boldsymbol{r}'}(\tau').$$

Spin susceptibility of the host metal

Spin chain on semi-metal

B. Danu, M. Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + \frac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

Integrate out electrons à la Hertz-Millis

$$\mathcal{S}(\boldsymbol{n}) = \mathcal{S}_{\mathrm{spin}}(\boldsymbol{n}) + \mathcal{S}_{\mathrm{diss}}(\boldsymbol{n}) + \cdots$$

$$\mathcal{S}_{ ext{diss}}(\boldsymbol{n}) = rac{J_k^2}{8} \int d au d au' \sum_{\boldsymbol{r}, \boldsymbol{r}'} \boldsymbol{n}_{\boldsymbol{r}}(au) \chi^0(\boldsymbol{r}-\boldsymbol{r}', au- au') \boldsymbol{n}_{\boldsymbol{r}'}(au').$$

$$\Delta_n = \frac{1}{2}$$

$$\sum \chi^0(\mathbf{0}, \tau - \tau') \propto \frac{1}{v_F^2(\tau - \tau')^4} \qquad \qquad \chi^0(r \boldsymbol{e}_x, 0) \propto \frac{1}{r^4} \qquad \qquad \text{Kondo is irrelevant}$$

For:
$$\boldsymbol{r} o \lambda \boldsymbol{r}, \ \tau o \lambda \tau, \quad \mathcal{S}_{\mathrm{diss}}(\boldsymbol{n}) = \frac{J_k^2}{8} \int d\tau d\tau' d\boldsymbol{r} \, \boldsymbol{n}_{\boldsymbol{r}}(\tau) \chi^0(0, \tau - \tau') \boldsymbol{n}_{\boldsymbol{r}}(\tau') \to \lambda^{-2} \mathcal{S}_{\mathrm{diss}}(\boldsymbol{n})$$

Spin chain on semi-metal

B. Danu, M. Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + \frac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

 $S(\boldsymbol{q})$

Spin chain on semi-metal

B. Danu, M. Vojta, FFA, and T. Grover, Phys. Rev. Lett. 125 (2020), 206602.

Composite fermion spectral function

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Summary II

$$\hat{H} = -t \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} (\hat{\boldsymbol{c}}_{\boldsymbol{i}}^{\dagger} \hat{\boldsymbol{c}}_{\boldsymbol{j}} + h.c) + \frac{J_k}{2} \sum_{\boldsymbol{r}} \hat{\boldsymbol{c}}_{\boldsymbol{r}}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}} + J_h \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'}$$

Kondo breakdown transition

Dissipation induced long range order

QCP between antiferromagnetic heavy fermion

metal and heavy fermion metal

Realization of marginal Fermi liquid at QCP between antiferromagnetic heavy fermion metal and heavy fermion metal

target, one valley

reference, two valley, charge neutrality point

 $H = U \sum_{\bigcirc} (Q_{\bigcirc} + \alpha T_{\bigcirc} - \nu)^{2}$ $Q_{\bigcirc} = \frac{1}{3} \sum_{\sigma,\tau} \sum_{l=1}^{6} c^{\dagger}_{R+\delta_{l},\sigma,\tau} c_{R+\delta_{l},\sigma,\tau} - 4,$

 $T_{\bigcirc} = \sum_{\sigma,\tau} \sum_{l=1}^{6} \left[(-1)^{l} c_{R+\delta_{l+1},\sigma,\tau}^{\dagger} c_{R+\delta_{l},\sigma,\tau} + h.c. \right]$

 $\nu = \pm 2$ target

 $\nu = 0$ charge neutrality point, reference

Xu Zhang et al., Fermion sign bounds theory in quantum Monte Carlo simulation, PRB 106, 035121 (2022)

Thermodynamic characteristic for correlated flat-band system with quantum anomalous Hall ground state

Gaopei Pan,^{1,2} Xu Zhang,³ Hongyu Lu,³ Heqiu Li,⁴ Bin-Bin Chen,³ Kai Sun,^{5,*} and Zi Yang Meng^{3,†}

Polynomial Sign Problem and Topological Mott Insulator emerging in Twisted Bilayer Graphene

Xu Zhang,¹ Gaopei Pan,^{2,3} Bin-Bin Chen,¹ Heqiu Li,⁴ Kai Sun,⁵,^{*} and Zi Yang Meng^{1,†}

Phys. Rev. B 107, L241105 (2023)