Content

0. Introduction

1. Regression
1.1 Multivariate Linear Regression (curve fitting)
1.2 Regularization (Lagrange multiplier)
1.3 Logistic Regression (Fermi-Dirac distribution)
1.4 Support Vector Machine (high-school geometry)

2. Dimensionality Reduction/feature extraction
2.1 Principal Component Analysis (order parameters)
2.2 Recommender Systems
2.3 Clustering (phase transition)
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3. Neural Networks
3.1 Biological neural networks
3.2 Mathematical representation

3.3 Feed-forward neural networks
3.5 Different Learning algorithm
3.6 Deep learning and CNN




Improving the way neural networks learn

* A better choice of cost function — the cross-entropy

* Regularization methods — L1, L2, dropout, Jackknife resampling
* A better initialisation of the weights

* Good choice of hyper-parameters

We often learn fastest when we're badly wrong about something.
But our artificial neuron has a lot of difficulty learning when it's badly
wrong - far more difficulty than when it's just a little wrong.
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Learning slow down at the saturation
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* the cross-entropy is non-negative
* if the neuron's actual output is close to the desired output for all training inputs the

cross-entropy will be close to zero — y=1
* avoid the learning slow down ’ e
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e when we use the quadratic cost learning is slower when the neuron is wrong than it is
later on, as the neuron gets closer to the correct output

¢ while with the cross-entropy learning is faster when the neuron is wrong.
e from an information perspective, the cross-entropy measures how "surprised" we are, on

average, when we learn the true value for y. We get low surprise if the output is what we
expect, and high surprise if the output is unexpected
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Hyperparameters: learning rate, mini-batch size Requires thorough optimisation process

Hidden layer

(30 neurons) Fermi: "l remember my friend Johnny von Neumann used

to say, with four parameters | can fit an elephant, and with

~ five | can make him wiggle his trunk.".
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e choice a better activation — softmax

e’
Softmax activation — partition function -

* Regularization methods — L1, L2, dropout,
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* Jackknife resampling
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* A better initialisation of the weights — do not saturate the neutrons
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Deep learning - Convolutional neural network (CNN)

With CNN, 10,000 MNIST test images, one can classify 9,967 correctly. Accuracy 99.67% !!
Here's a peek at the 33 images which are misclassified. These are tough even for humans.
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Deep learning - Convolutional neural network (CNN)
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Convolutional layer
More than one feature map, more than one set of shared weights+bias, more than one filer

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons
I extract translational invariant features
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LeNet-5, 6 feature maps, 5x5 local receptive field

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324 (1998)
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Reduced number of parameters:

Each feature map 5x5 (weights) + 1 (bias)=26 parameter
20 feature maps 20x26 = 520 parameters in total

Pooling layers

785x30 = 23550 fully-connected layer

max-pooling, take the maximum activation in the 2x2 input region

hidden neurons (output from feature map)

max-pooling units
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Input feature map pooling fully-connected output
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Backpropagation for pooling and convolution layers
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This architecture gives 98.78 % accuracy.
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e Expanding the training data

e |nserting extra fully-connected and extra convolution layers
e Using an ensemble of networks

e Using the right cost function to avoid learning slowdown

e Using good weight initialisation (also avoid the learning slowdonw)

ImageNet

GPU (an NVIDIA GeForce GTX 580) didn't have enough on-chip memory to
store their entire network
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ImageNet classification with deep convolutional neural networks,
Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton (2012).


http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
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Chin. Phys. Lett. 39, 050701 (2022)

Network-Initialized Monte Carlo Based on Generative

Neural Networks

Hongyu Lu, Chuhao Li, Bin-Bin Chen,
MCMC Loss
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In order to optimize such neural networks, for both classical and quantum models, we prepare 1000 sets of observables measured
from MC simulations and take 1000 input random configurations which will be processed into generated configurations. The
comparison in loss function is randomly distributed without any grouping. For the choice of observables in the defined loss
functions, we simply pick some from the ones we usually focus on. In the Ising case, we take the batch size to be 5 and epoch
number to be up to 150 as the computation is quite easy. While in the Hubbard case, we run at most 15 epochs with a batch size
of 3. We optimize the network parameters using Adam[63] with conventional learning rate 1073, 8; = 0.9, and 8, = 0.999.
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Recurrent neural networks (RNNs)
Generative models

The ability to learn hierarchies of concepts,
building up multiple layers of abstraction,
seems to be fundamental to making sense of the world.

"basic research is what I'm doing when | don't know what I'm doing"

As the old joke goes, if you ask a scientist how far away some
discovery is and they say "10 years" (or more), what they mean is
"I've got no idea". Al, like controlled fusion and a few other
technologies, has been 10 years away for 60 plus years.



