Content

0. Introduction

1. Differential equations
1.1 Classical equation of motion (classical mechanics, pendulum)
1.2 Partial differential equation relaxation methods (electromagnetism, diffusion)
1.3 Partial differential equation in space-time (traffic flow, tsunami)
2. Eigenvalue problem
2.1 Schrödinger equation and Hamiltonian (Harmonic oscillator, wave package)
2.2 Quantum lattice model and Hibert space (Heisenberg model)
2.3 Exact diagonalization of spin chain (Spin wave, Haldane conjecture, topology)
2.4 Matrix product state and density matrix renormalization group (DMRG)

Content

3. Statistical and many-body physics
3.1 Classical Monte Carlo and phase transitions (Ising model and critical phenomena)
3.2 Quantum Monte Carlo methods (Path-integral and cluster update)
4. Machine learning in physics and High performance computation
4.1 Al in quantum physics
4.2 HPC and parallelism
4.3 ...

Quantum lattice model

$\underset{\left(\mathrm{Hg}_{2} 201\right)}{\mathrm{HgBa}^{2} \mathrm{CuO}_{4}}$
$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-}$ (YBCO)
$\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4}$ (LSCO)
a

b

$H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j} \quad \vec{S}_{i}=\left(\begin{array}{c}S_{i}^{x} \\ S_{i}^{y} \\ S_{i}^{z}\end{array}\right)$

$$
\left[S_{i}^{\alpha}, S_{j}^{\beta}\right]=i \hbar \epsilon_{\alpha \beta \gamma} S_{i}^{\gamma} \delta_{i j}
$$

Basis of the Hilbert space

$$
\begin{aligned}
& \left|S_{i}^{z}=+1 / 2\right\rangle_{i}=|\uparrow\rangle_{i}=\binom{1}{0}_{i} \quad\left|S_{i}^{z}=-1 / 2\right\rangle_{i}=|\downarrow\rangle_{i}=\binom{0}{1}_{i} \\
& S_{i}^{z}=\frac{1}{2} \sigma_{i}^{z}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
& S_{i}^{z}|\uparrow\rangle_{i}=+\frac{1}{2}|\uparrow\rangle_{i} \\
& S_{i}^{z}|\downarrow\rangle_{i}=-\frac{1}{2}|\downarrow\rangle_{i} \\
& \sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& S_{i}^{+}=S_{i}^{x}+i S_{i}^{y}=\frac{1}{2} \sigma_{i}^{x}+i \frac{1}{2} \sigma_{i}^{y}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
S_{i}^{+}|\downarrow\rangle_{i}=|\uparrow\rangle_{i} \\
S_{i}^{+}|\uparrow\rangle_{i}=0
\end{array} \\
& S_{i}^{-}=S_{i}^{x}-i S_{i}^{y}=\frac{1}{2} \sigma_{i}^{x}-i \frac{1}{2} \sigma_{i}^{y}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \begin{array}{l}
S_{i}^{-}|\uparrow\rangle_{i}=|\downarrow\rangle_{i} \\
S_{i}^{-}|\downarrow\rangle_{i}=0
\end{array} \\
& \left\{\left|S_{1}^{z}, S_{2}^{z}, \cdots, S_{N}^{z}\right\rangle\right\}=\left\{\begin{array}{c}
|\uparrow, \uparrow, \cdots, \uparrow, \uparrow\rangle \\
|\uparrow, \uparrow, \cdots, \uparrow, \downarrow\rangle \\
|\uparrow, \uparrow, \cdots, \downarrow, \uparrow\rangle \\
\vdots \\
|\uparrow, \downarrow, \cdots, \downarrow, \downarrow\rangle \\
|\downarrow, \downarrow, \cdots, \downarrow, \downarrow\rangle
\end{array}\right\} \quad 2^{N}
\end{aligned}
$$

Hamiltonian matrix

$$
\begin{aligned}
& H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i, j\rangle}\left(\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+S_{i}^{z} S_{j}^{z}\right) \\
& H|\uparrow \uparrow\rangle=\frac{J}{4}|\uparrow \uparrow\rangle \\
& H|\downarrow \downarrow\rangle=\frac{J}{4}|\downarrow \downarrow\rangle \\
& H|\uparrow \downarrow\rangle=J\left(\frac{1}{2}\left(S_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}\right)+S_{1}^{Z} S_{2}^{z}\right)|\uparrow \downarrow\rangle=\frac{J}{2}|\downarrow \uparrow\rangle-\frac{J}{4}|\uparrow \downarrow\rangle \\
& \langle\uparrow \uparrow| H|\uparrow \uparrow\rangle=\frac{J}{4} \\
& \langle\downarrow \downarrow| H|\downarrow \downarrow\rangle=\frac{J}{4} \\
& \langle\uparrow \downarrow| H|\uparrow \downarrow\rangle=-\frac{J}{4} \\
& \langle\downarrow \uparrow| H|\uparrow \downarrow\rangle=\frac{J}{2} \\
& H|\downarrow \uparrow\rangle=J\left(\frac{1}{2}\left(S_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}\right)+S_{1}^{Z} S_{2}^{z}\right)|\downarrow \uparrow\rangle=\frac{J}{2}|\uparrow \downarrow\rangle-\frac{J}{4}|\downarrow \uparrow\rangle \\
& \langle\uparrow \downarrow| H|\downarrow \uparrow\rangle=\frac{J}{2} \\
& \langle\downarrow \uparrow| H|\downarrow \uparrow\rangle=-\frac{J}{4} \\
& H=J\left(\begin{array}{cccc}
\frac{1}{4} & 0 & 0 & 0 \\
0 & -\frac{1}{4} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right) \quad \text { in the basis } \quad\left(\begin{array}{l}
|\uparrow \uparrow\rangle \\
|\uparrow \downarrow\rangle \\
|\downarrow \uparrow\rangle \\
|\downarrow \downarrow\rangle
\end{array}\right)
\end{aligned}
$$

Block-diagonalization $\quad S_{t o t}^{z}=\sum_{i} S_{i}^{z} \quad\left[H, S_{t o t}^{z}\right]=0 \quad$ different blocks are not connected by H

$$
\begin{aligned}
& S_{t o t}^{z}=+1:|\uparrow \uparrow\rangle, E=\frac{J}{4} \\
& S_{t o t}^{z}=-1:|\downarrow \downarrow\rangle, E=\frac{J}{4} \\
& S_{\text {tot }}^{z}=0:\{|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle\} \quad H_{0}=J\left(\begin{array}{cc}
-\frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{4}
\end{array}\right) \\
& |S\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \quad H_{0}|S\rangle=-\frac{3}{4} J|S\rangle \\
& |T\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \quad H_{0}|T\rangle=\frac{1}{4} J|T\rangle
\end{aligned}
$$

Triplet $\quad\left\{\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle),|\uparrow \uparrow\rangle,|\downarrow \downarrow\rangle\right\} \quad E=\frac{1}{4} J$

Singlet $\quad \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$

$$
E=-\frac{3}{4} J
$$

Hilbert space size

Dimensionality of the Hilbert space

$$
d=\operatorname{dim}(H)=2^{N}
$$

Computation complexity for diagonalising $\quad d \times d$ matrix $O\left(d^{3}\right)=O\left(2^{3 N}\right)$

$$
\begin{aligned}
& N=10 \quad \operatorname{dim}=1,024 \sim 10^{3} \\
& N=20 \quad \operatorname{dim}=1,048,576 \sim 10^{6} \\
& N=30 \quad \operatorname{dim}=1,073,741,824 \sim 10^{9} \\
& N=40 \quad \operatorname{dim}=1,099,511,627,776 \sim 10^{12} \\
& N=50 \quad \operatorname{dim}=1,125,899,906,842,624 \sim 10^{15}
\end{aligned}
$$

Wheat grains on chessboard - Sessa, ancient Indian Minister

State Representation

$$
\left|S_{1}^{z}, \cdots, S_{N}^{z}\right\rangle \quad 2^{N} \quad \text { states, use the bit representation } \quad H_{i j}=\langle i| H|j\rangle \quad i, j=0,1, \cdots, 2^{N}-1
$$

$$
\begin{align*}
|0\rangle & =|\downarrow, \downarrow, \cdots, \downarrow, \downarrow, \downarrow\rangle & (00 \cdots 000) \\
|1\rangle & =|\downarrow, \downarrow, \cdots, \downarrow, \downarrow, \uparrow\rangle & (00 \cdots 001) \\
|2\rangle & =|\downarrow, \downarrow, \cdots, \downarrow, \uparrow, \downarrow\rangle & (00 \cdots 010) \\
|3\rangle & =|\downarrow, \downarrow, \cdots, \downarrow, \uparrow, \uparrow\rangle & (00 \cdots 011)
\end{align*}
$$

XOR operation

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i, j\rangle}\left(\frac{1}{2} \underline{\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)}+S_{i}^{z} S_{j}^{z}\right)
$$

Construct the Hamiltonian matrix by examining and flipping the bits.
do $\quad a=0,2^{N}-1$

$$
\text { do } i=0, N-1
$$

$$
j=\bmod (i+1, N)
$$

$$
\text { if }(a[i]==a[j]) \text { then }
$$

else

$$
H(a, a)=H(a, a)+\frac{1}{4}
$$

$$
H(a, a)=H(a, a)-\frac{1}{4}
$$

$$
\begin{aligned}
& b=\mathbf{X O R}(a, i, j) \quad H(a, b)=H(a, b)+\frac{1}{2} \\
& d \mathbf{d i f}
\end{aligned}
$$

end if
end do
end do

Measurement

Total magnetisation $\quad m_{z}=\sum_{i=1}^{N} S_{i}^{z} \quad U$ is the matrix whose columns are eigenvectors of H $U(i, n)=\operatorname{vec}(i, n) \quad$ i:th component of the eigenvector n

$$
|n\rangle_{e i g e n}=\sum_{i=1}^{2^{N}} \phi_{i}|i\rangle \quad\langle n| m_{z}|n\rangle=\sum_{i, j=1}^{2^{N}} \phi_{i} \phi_{j}\langle j| m_{z}|i\rangle=\sum_{i}^{2^{N}} \phi_{i}^{2}\langle i| m_{z}|i\rangle=\sum_{i}^{2^{N}} \phi_{i}^{2} m_{z}(i)
$$

Expectation value of operator A in the n-th eigenstate $\langle n| A|n\rangle=\left[U^{\dagger} A U\right]_{n n}$
m_{z} commute with H, share the same eigenstates $|n\rangle \quad S_{a a}^{z}=\frac{1}{2}\left(n_{\uparrow}-n_{\downarrow}\right) \quad n_{\downarrow}=N-n_{\uparrow}$
Discuss the ground state wave function of Heisenberg chain and 2d square lattice

Hamiltonian matrix is block-diagonalised

$N!$	$N=40 \quad \operatorname{dim}=1,099,511,627,776 \sim 10^{12}$		
(N/2)!(N/2)!	In the $m_{z}=0$ sector, dimension of the subspace	$\frac{40!}{20!20!}$	$\approx 138 \times 10$
Use symm - Blocks corre - No H matrix - Blocks can b	s to further split the blocks: d to fixed values of m_{z} ents between states of different m_{z} gonalised individually	\rightarrow	m_{z}

Hamiltonian matrix is block-diagonalised

$\frac{N!}{(N / 2)!(N / 2)!} \quad \begin{array}{ll}N=40 \quad \operatorname{dim} \text { the } m_{z}=0 \text { sector, dimension of the subspace }\end{array} \quad \frac{40!}{20!20!} \approx 138 \times 10^{9}$

$$
H \rightarrow m_{z}
$$

$$
s_{1}=3(0011)
$$

$$
N=4, n_{\uparrow}=2 \quad M=\frac{4!}{2!2!}=6
$$

$$
s_{2}=5(0101)
$$

$$
s_{3}=6(0110)
$$

$$
s_{4}=9(1001)
$$

Hamiltonian construction

$$
\begin{gathered}
\text { do } a=0, M-1 \\
\\
\text { do } \quad i=0, N-1 \\
\\
j=\bmod (i+1, N) \\
\\
\text { if }\left(s_{a}[i]==s_{a}[j]\right) \text { then } \\
H(a, a)=H(a, a)+\frac{1}{4} \\
\\
\\
\text { else } \\
H(a, a)=H(a, a)-\frac{1}{4} \\
b=\operatorname{XOR}(a, i, j)
\end{gathered}
$$

Find the location b as a state in the list s_{a}
Full diag: 2m25s Measurement mz: 2m25s
12 site PBC
Block diag: 4s !!
end if
end do
$M=a$
if $\left(\sum_{i} s[i]=n_{\uparrow}\right)$ then $a=a+1 ; s_{a}=s$
each block is a $M \times M$ matrix
findstate $(s, b) \quad H(a, b)=H(a, b)+\frac{1}{2}$ end if
end do end do

$$
s_{5}=10(1010)
$$

$$
s_{6}=12(1100)
$$

Hamiltonian matrix is block-diagonalised

Using momentum as an example (for translationally invariant systems)

Other symmetries (conserved quantum numbers):

- further split the blocks
- Constructed basis states that obey the symmetries
$T|n\rangle=e^{i k}|n\rangle \quad k=m \frac{2 \pi}{N}, m=0,1, \cdots, N-1 \quad$ translate the state by one lattice spacing In spin basis $\quad T\left|s_{1}^{z}, s_{2}^{z}, \cdots, s_{N}^{z}\right\rangle=\left|s_{N}^{z}, s_{1}^{z}, \cdots, s_{N-1}^{z}\right\rangle \quad[T, H]=0$

Use eigenstates of T with given k as basis in each block
a momentum state can be constructed from representative state as

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|s_{1}^{z}, s_{2}^{z}, \cdots, s_{N}^{z}\right\rangle
$$

construct ordered list of representatives
If |a> and |b> are representatives, then
$T^{r}|a\rangle \neq|b\rangle \quad r \in\{1,2, \cdots, N-1\}$

Representative is the one with smallest integer

$$
\begin{aligned}
& (0011) \rightarrow(0110),(1100),(1001) \\
& (0101) \rightarrow(1010)
\end{aligned}
$$

$$
\begin{aligned}
|a(k)\rangle & =\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|s_{1}^{z}, s_{2}^{z}, \cdots, s_{N}^{z}\right\rangle \quad k=m \frac{2 \pi}{N}, m=0,1, \cdots, N-1 \\
T^{R}|a\rangle & =|a\rangle \quad \text { for some } \quad R<N \\
k R & =n 2 \pi \quad m=n \frac{N}{R} \rightarrow \bmod (m, N / R)=0
\end{aligned}
$$

Normalization of a state with periodicity R_a $\quad\langle a(k) \mid a(k)\rangle=\frac{1}{N_{a}} \times R_{a} \times\left(\frac{N}{R_{a}}\right)^{2}=1 \rightarrow N_{a}=\frac{N^{2}}{R_{a}}$
Find all allowed representatives and their periodicities

$$
\left(a_{1}, a_{2}, a_{3}, \cdots, a_{M}\right) \quad R_{a}
$$

do $s=0,2^{N}-1$
checkstate $(s, R) \longrightarrow \bullet \mathbf{R}=$ periodicity if integer \mathbf{s} is a new representative
if $(R \geq 0)$ then $a=a+1 ; s_{a}=s ; R_{a}=R$
end if

end do

- $R=-1$ if
- the magnetization is not the one considered
- some translation of |s> gives an integer < s
- $|s\rangle$ is not compatible with the momentum
$M=a$
each block is a $M \times M$ matrix

Translations of the representative; cyclic permutation

r	T^{r}		
0	$\left.27$0 0 \right\rvert\,		
	0		

$$
\begin{aligned}
& \text { checkstate }(s, R) \\
& \begin{array}{l}
R=-1 \\
\text { if }\left(\sum_{i} s[i] \neq n_{\uparrow}\right) \text { return } \longrightarrow
\end{array} \\
& \begin{array}{l}
t=s \\
\text { do } i=1, N \\
\quad \begin{array}{l}
t=\text { cyclebits }(t, N) \\
\text { if }(t<s) \text { then } \\
\quad \text { return }
\end{array} \\
\quad \text { else if }(t=s) \text { then magnetisation } \\
\quad \text { if }(\mathbf{m o d}(k, N / i) \neq 0) \text { return } \\
\quad R=i ; \text { return } \\
\text { end if } \\
\text { end do meck momentum compatibility: } \\
\text { end is the integer index of momentum } \mathrm{k}
\end{array} \\
& \begin{array}{l}
\text { momentum }=k \frac{2 \pi}{N}, k=0,1, \cdots, N-1
\end{array}
\end{aligned}
$$

$$
H=\sum_{j=0}^{N} \underbrace{S_{S_{j+1}^{z} S_{j}^{z}}^{S_{0}}}_{H_{0}}+\underbrace{\frac{1}{2}\left(S_{j}^{+} S_{j+1}^{-}+S_{j}^{-} S_{j+1}^{+}\right)}_{H_{j}}
$$

momentum state

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|s_{1}^{z}, s_{2}^{z}, \cdots, s_{N}^{z}\right\rangle
$$

act with H on a momentum state

$$
\begin{aligned}
& \qquad \begin{aligned}
H|a(k)\rangle & =\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r} H|a\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \sum_{j=0}^{N} e^{-i k r} T^{r} H_{j}|a\rangle \quad \begin{array}{l}
H_{j}|a\rangle \\
\frac{1}{2} T^{-l_{j}}\left|b_{j}\right\rangle \\
\\
\end{array}=\sum_{j=0}^{N} \frac{\left.h_{j}^{j}\right\rangle=T^{l} H_{j}|a\rangle}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} e^{-i k r} T^{\left(r-l_{i}\right)}\left|b_{j}\right\rangle=\sum_{j=0}^{N} h_{a}^{j} e^{-i k l_{j}} \sqrt{\frac{N_{b_{j}}}{N_{a}}} \underbrace{\frac{1}{\sqrt{N_{b_{j}}}} \sum_{r=0}^{N-1} e^{-i k r} T^{r}\left|b_{j}\right\rangle}_{\left|b_{j}(k)\right\rangle}
\end{aligned}
\end{aligned}
$$

Finding the representative r of a state-integer $\mathrm{s} \quad|r\rangle=T^{l}|s\rangle$

Lowest integer among all translations representative (s, r, l)

$$
r=s ; t=s ; l=0
$$

$$
\text { do } i=1, N-1
$$

$t=\operatorname{cyclebits}(t, N)$
if $(t<r)$ then $r=t ; l=i$ end if end do
Matrix elements

$$
\begin{gathered}
\langle a(k)| H_{0}|a(k)\rangle=\sum_{j=0}^{N} S_{j}^{z} S_{j+1}^{z} \\
\left\langle b_{j}(k)\right| H_{j}|a(k)\rangle=e^{-i k l_{j}} \frac{1}{2} \sqrt{\frac{N_{b_{j}}}{N_{a}}}=e^{-i k l_{j}} \frac{1}{2} \sqrt{\frac{R_{a}}{R_{b_{j}}}}
\end{gathered}
$$

$$
k=m \frac{2 \pi}{N}, m=0,1, \cdots, N-1 \quad N_{a}=\frac{N^{2}}{R_{a}}
$$

Hamiltonian construction

$$
\begin{aligned}
& \text { do } a=0, M-1 \\
& \text { do } i=0, N-1 \\
& j=\bmod (i+1, N) \\
& \text { if }\left(s_{a}[i]==s_{a}[j]\right) \text { then } \\
& H(a, a)=H(a, a)+\frac{1}{4} \\
& \text { else } \\
& H(a, a)=H(a, a)-\frac{1}{4} \\
& s=\operatorname{flip}\left(s_{a}, i, j\right) \\
& \text { representative }(s, r, l) \\
& \text { findstate }(r, b) \\
& \text { if }(b \geq 0) \text { then } \\
& \text { end if } \\
& \text { end if } \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Full diag: impossible

Block diag Mz: impossible

$$
\begin{aligned}
& \longrightarrow=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \\
& \bigcirc=|+\rangle\langle\uparrow \uparrow|+|0\rangle \frac{\langle\uparrow \downarrow|+\langle\downarrow \uparrow|}{\sqrt{2}}+|-\rangle\langle\downarrow \downarrow| \\
& H=J \sum_{\langle i, j\rangle} S_{i} \cdot S_{j} \\
& Z(g)=\int \mathscr{D} \vec{n}(x, t) e^{-S_{N L S}(\vec{n})+S_{\text {top }}(\vec{n})} \\
& \text { \& From Prof. Han-Qing Wu of SYSU } \\
& \text { Small spin, dynamic mass } \\
& \text { generation, gap } \\
& \text { c } \\
& \text { Skyrmions are topological defects } \\
& S=1, \theta=2 \pi \quad e^{-S_{\text {top }}}=1 \quad \text { does not contribute } \\
& S=1 / 2, \theta=\pi \quad e^{-S_{\text {top }}}=(-1)^{\# s k y r i o n}
\end{aligned}
$$

Excitations in Heisenberg chain

KCuF_{3}

\& Lake, Tennant, Frost and Nagler, Nature Materials 4, 329 (2005)
CsNiCl_{3}

\& Kenzelmann, Cowley, Buyers, Tun, Coldea, Enderle, Phys. Rev. B 66, 024407 (2002)

a 1111111

c

The wormhole effect on the path integral of reduced density matrix - Unlock the mystery of energy spectrum and entanglement spectrum

