The learning of entanglement on quantum criticalities

ZI YANG MENG 孟子杨 <u>https://quantummc.xyz/</u>

In collaborations with

Menghan Song (HKU)	Zi Hong Liu (Würzburg -> Dresder	n) Meng Cheng (Yale)
Jiarui Zhao (HKU)	Juncheng Rong (IHES)	Yuxuan Wang (Florida)
Xu Zhang (HKU)	Jonathan D'Emidio (DIPC)	Kai Sun (Michigan)
Bin-Bin Chen (HKU)	Lukas Janssen (Dresden)	William W. Krempa (Montreal)
Gaopei Pan (IOP -> Würzburg)	Michael Scherer (Bochum)	Chaoming Jian (Cornell)
Yuan Da Liao (Fudan)	Fakher Assaad (Würzburg) Yi-Zhuang You (UCSD	
Zheng Yan (Westlake)		Cenke Xu (UCSB)
Yan-Cheng Wang (Beihang)		

Mark Kac, Polish American mathematician 1914 - 1984

"My presentation will be more in the nature of a leisurely excursion than of an organised tour. It will not be my purpose to reach a specific destination at a scheduled time. Rather I would like to allow myself on many occasions the luxury of stopping and looking around."

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York

To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

Dennis G. Zill, Differential Equations with Boundary Value Problems, 9e, © 2018

°ρ 0 Ω

r

 $\frac{1}{2} \nabla^2 U + \lambda U = 0$ in Ω ,

U = 0 on Γ .

non-local measurement

FINITE-SIZE DEPENDENCE OF THE FREE ENERGY IN **TWO-DIMENSIONAL CRITICAL SYSTEMS**

John L. CARDY and Ingo PESCHEL*

Nucl. Phys. B 300, 377 (1988)

Eigenvalues of Dirichlet problem for Laplacian 🔮 Am. Math. Mon. 73, 1 (1966)

Platonic solids: homeomorphic to sphere

 $\gamma = V - E + F = 2$

sphere / polyhedron $\chi = 2$

Conformal anomaly number (central charge) $F = f_b |A| + f_s L - \frac{1}{6} c \chi \ln L + O(1)$ Euler characteristic Klein bottle / moebius torus / cylinder / annuls

 $\chi = 2 - 2g = 0$

Entanglement Entropy of 2D Conformal Quantum Critical Points: Hearing the Shape of a Quantum Drum

Eduardo Fradkin¹ and Joel E. Moore^{2,3}

$$S_A(l) = al - s\ln l - b$$

d=1 CFT	$S \sim c \ln(l)$	Heisenberg chain, Luttinger liquid	DMRG
d=2 QCP	$S \sim al - s(c)\ln(l) - b$	Wilson-Fisher O(N), SC-Mott, GNY	QMC
SSB	$S \sim al - s(n_G) \ln(l)$	Antiferromagnet, SC, Superfluid	QMC
Topological order	$S \sim al - \gamma_{top}$	Z2 top ord, Kitaev QSL	Toy model, QMC
Fermi surface	$S \sim l \ln(l) + al - \cdots$	free fermion, interaction ?	not even QMC

Entanglement entropy with incremental (Qiu Ku) method

 $S_A^{(2)}(l) = al - s \ln l - b$

Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

🖗 Menghan Song, Jiarui Zhao, Lukas Janssen, Michael Scherer, ZYM, arXiv: 2307.02547

Bin-Bin Chen, Xu Zhang, Yuxuan Wang, Kai Sun, ZYM, arXiv:2307.05307

🖗 Zi Hong Liu, Yuan Da Liao, Gaopei Pan, ..., Yi-Zhuang You, F. Assaad, ZYM, Cenke Xu, arXiv:2308.07380

$$-\ln|\langle X_M\rangle| = al - s\ln l - b$$

Yan-Cheng Wang, Meng Cheng, William Witczak-Krempa, ZYM, Nat. Commun. 12, 5347 (2021)

Yan-Cheng Wang, Nvsen Ma, Meng Cheng, ZYM, SciPost Phys. 13, 123 (2022)

🖗 Weilun Jiang, Bin-Bin Chen, Zi Hong Liu, Junchen Rong, F. Assaad, Meng Cheng, Kai Sun, ZYM, SciPost Phys. (2023)

🗳 Zi Hong Liu, Weilun Jiang, Bin-Bin Chen, Junchen Rong, Meng Cheng, Kai Sun, ZYM, F. Assaad, PRL 130, 266501 (2023)

(2+1)d SSB, O(3), Topological order Z2 QSL, GNY, FL, nFL, DQCP, SMG, ...

What is Qiu Ku (秋裤)

How can you tell winter is coming?

In Chinese: I need to put my Qiu Ku on.

Iong underwear, looks similar to leggings and Yoga pants

normally made of cotton

most popular colors are grey, blue, white and beige

- nothing to do with fashion or style
- the only reason for its existence is to keep you warm. When jeans can no longer resist the freezing air, just wear Qiu Ku under your jeans. Problem solved!

A pair of (stretchy) pants

long johns

Photo: Hulton Archive/Getty Images

In Victorian time

A **Mother Hubbard dress** is a long, wide, loose-fitting gown with long sleeves and a high neck. It is intended to cover as much skin as possible.

Entanglement entropy and quantum field theory

⁹ J. Stat. Mech. (2004) P06002

Pasquale Calabrese^{1,3} and John Cardy^{1,2}

Vincenzo Alba, PRE 95, 062132 (2017)

Jonathan D'Emidio, PRL 124, 110602 (2020)

$$Z_{A}^{(2)}(\lambda) = \sum_{B \subseteq A} \lambda^{N_{B}}(1-\lambda)^{N_{A}-N_{B}} Z_{B}^{(2)} \qquad S_{A}^{(2)} = -\ln(\frac{Z_{A}^{(2)}}{Z_{\emptyset}^{(2)}}) = -\int_{0}^{1} d\lambda \frac{\partial \ln Z_{A}^{(n)}(\lambda)}{\partial \lambda} = -\ln(\langle e^{-\beta W_{A}^{(2)}} \rangle)$$

$$Z^{(2)}(\lambda=0) = Z_{\emptyset}^{(2)} \qquad Z_{A}^{(2)}(\lambda=1) = Z_{A}^{(2)} \qquad \frac{\partial \ln Z_{A}^{(2)}(\lambda)}{\partial \lambda} = \langle \frac{N_{B}}{\lambda} - \frac{N_{A}-N_{B}}{1-\lambda} \rangle_{\lambda}$$

$$\lambda(t_{f}) = 1$$

$$W_{A}^{(2)} = -\frac{1}{\beta} \int_{t_{f}}^{t_{f}} dt \frac{d\lambda}{dt} \langle \frac{N_{B}}{\lambda(t)} - \frac{N_{A}-N_{B}}{1-\lambda(t)} \rangle_{\lambda(t)}$$

$$\lambda(t_{f}) = 0$$

Nonequilibrium Equality for Free Energy Differences

Phys. Rev. Lett. 78, 2690 (1997)

C. Jarzynski*

$$\langle W \rangle \ge \Delta F = F_B - F_A \qquad \exp(-\beta \Delta F) \equiv \langle \exp(-\beta W) \rangle = \langle \exp[-\beta \int_{t_i}^{t_f} dt \delta W(t)] \rangle = \frac{Z_f}{Z_i} \qquad S = \beta \Delta F = -\ln(\frac{Z_f}{Z_i}) = -\ln(\langle e^{-\beta W} \rangle)$$

Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022) Ģ Gaopei Pan, Yuan Da Liao, Weilun Jiang, Jonathan D'Emidio, ZYM, arXiv: 2303.14326

 $Z_{A}^{(2)}(\lambda) = \sum_{B \subseteq A} \lambda^{N_{B}} (1-\lambda)^{N_{A}-N_{B}} Z_{B}^{(2)} \qquad S_{A}^{(2)} = -\ln(\frac{Z_{A}^{(2)}}{Z_{\varnothing}^{(2)}}) = -\int_{0}^{1} d\lambda \frac{\partial \ln Z_{A}^{(n)}(\lambda)}{\partial \lambda} = -\sum_{k=1,2,\dots,N} \int_{(k-1)\Lambda}^{k\Delta} d\lambda \frac{\partial \ln Z_{A}^{(2)}(\lambda)}{\partial \lambda}$ $\left\langle \frac{\partial \ln Z_A^{(2)}(\lambda)}{\partial \lambda} = \left\langle \frac{N_B}{\lambda} - \frac{N_A - N_B}{1 - \lambda} \right\rangle_{\lambda} \right\rangle$ $Z_A^{(2)}(\lambda = 1) = Z_A^{(2)}$ $Z^{(2)}(\lambda = 0) = Z^{(2)}_{\alpha}$ (a) 2β $= -\ln(\langle e^{-\beta W_A^{(2)}} \rangle) = - \sum \ln(\langle e^{-\beta W_{k,A}^{(2)}} \rangle)$ $k=1.2....N_{1}$ A L $\lambda(t_f) = k\Delta$ (c) $W_{k,A}^{(2)} = -\frac{1}{\beta} \int_{t}^{t_{f}} dt \, \frac{d\lambda}{dt} \, \langle \frac{N_{B}}{\lambda(t)} - \frac{N_{A} - N_{B}}{1 - \lambda(t)} \rangle_{\lambda(t)}$ $\lambda(t_i) = (k-1)\Delta$ 0 2Λ kΔ $(k+1)\Delta$ $(K-2)\Delta$ $(K-1)\Delta$ $(K-1)\Delta$ Δ CPU-1 CPU-2 CPU-(k+1) CPU-(K-1) CPU-K Parallization does the job. $e^{-S_A^{(2)}} = \frac{Z(1)}{Z(0)} := \frac{Z(\lambda_1)}{Z(0)} \frac{Z(\lambda_2)}{Z(\lambda_1)} \cdots \frac{Z(\lambda_k)}{Z(\lambda_{k-1})} \cdots \frac{Z(1)}{Z(\lambda_{N_1-1})}$ The Qiu Ku algorithm is

nostalgic, sentimental and useful

Condensed Matter > Strongly Correlated Electrons

(a)

1200

[Submitted on 20 Jul 2023]

Controllable Incremental Algorithm for Entanglement Entropy and Other Observables with Exponential Variance Explosion in Many-Body Systems

Yuan Da Liao

Researchers in the field of physical science are continuously searching for universal features in strongly interacting many-body systems. However, these features can often be concealed within highly complex observables, such as entanglement entropy (EE). The non-local nature of these observables makes them challenging to measure experimentally or evaluate numerically. Therefore, it is of utmost importance to develop a reliable and convenient algorithm that can accurately obtain these complex observables. In this paper, with help of quantum Monte Carlo (QMC), we reveal that the

Search...

Help | Advance

Symmetry breaking phase

- Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)
- Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

Quantum critical points

- Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)
- Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

J. Helmes, W. W-Krempa, R. Melko, Phys. Rev. B 94 125142 (2016)

Topological order *Subscription* Yan-Cheng Wang, Meng Cheng, William Witczak-Krempa, ZYM, Nat Commun 12, 5347 (2021)

Spinon and vison Conductivity fractionalisation Translational symmetry fractionalisation

S. Isakov, Y.B. Kim, A. Paramekanti, PRL 97, 207204 (2006)
 Y.-C. Wang, et al., PRL 121, 057202 (2018)
 G.-Y. Sun, et al., PRL 121, 077201 (2018)
 J. Becker, S. Wessel, PRL 121, 077202 (2018)

 $S(l) = al - \gamma$

logical entanglement entropy (TEE)

$$\gamma = \ln(\mathcal{D}) = \ln(\sqrt{\sum_{a \in \mathscr{C}} d_a^2})$$

Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

DQCP

🖗 Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

₩ H. Casini, M. Huerta, Journal of High Energy Physics 2012, 87 (2012)

Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

DQCP Disorder Operator

Corner corrections for Renyi EE must be positive for unitary CFTs

H. Casini, M. Huerta, Journal of High Energy Physics 2012, 87 (2012)

Fermion Disorder Operator at Gross-Neveu and Deconfined Quantum Criticalities

Zi Hong Liu[®],¹ Weilun Jiang,^{2,3} Bin-Bin Chen,⁴ Junchen Rong,⁵ Meng Cheng,^{6,*} Kai Sun,^{7,†} Zi Yang Meng[®],^{4,‡} and Fakher F. Assaad^{1,§}

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere: multicritical point and disorder phase

Bin-Bin Chen,¹ Xu Zhang,¹ Yuxuan Wang,²,^{*} Kai Sun,³,[†] and Zi Yang Meng¹,[‡]

M. Ippoliti, R. Mong, F. Assaad, M. Zaletel, PRB 98, 235108 (2018)
 Z. Wang, M. Zaletel, R. Mong, F. Assaad, PRL 126, 045701 (2021)

$$S = \frac{1}{g} \int d^3 x (\nabla \hat{\boldsymbol{\varphi}})^2 + S_{\rm WZW} + \cdots$$

$$H = \frac{1}{2} \int d\Omega \{ U_0[\psi^{\dagger}(\Omega)\psi(\Omega) - 2]^2 - \sum_{i=1}^5 u_i[\psi^{\dagger}(\Omega)\Gamma^i\psi(\Omega)]^2 \}$$

$$\psi_{\tau\sigma}(\Omega) \qquad \Gamma^{i} = \{\tau_{x} \otimes \mathbb{I}, \tau_{y} \otimes \mathbb{I}, \tau_{z} \otimes \sigma_{x}, \tau_{z} \otimes \sigma_{y}, \tau_{z} \otimes \sigma_{z}\}$$

magnet monople inside a sphere $4\pi s$ Projected to the LLL with degeneracy N = 2s + 1

$$\psi(\Omega) = \sum_{m=-s}^{s} \Phi_m(\Omega) c_m \quad \Phi_m(\Omega) \propto e^{im\phi} \cos^{s+m}(\frac{\theta}{2}) \sin^{s-m}(\frac{\theta}{2})$$

$$\begin{split} \hat{H}_{\Gamma} &= U_{0}\hat{H}_{0} - \sum_{i} u_{i}\hat{H}_{i}, \text{with} \\ \hat{H}_{i} &= \sum_{m_{1},m_{2},m} V_{m_{1},m_{2},m_{2}-m,m_{1}+m} \times \\ & \left(c_{m_{1}}^{\dagger}\Gamma^{i}c_{m_{1}+m} - 2\delta_{i0}\delta_{m0}\right) \left(c_{m_{2}}^{\dagger}\Gamma^{i}c_{m_{2}-m} - 2\delta_{i0}\delta_{m0}\right) \end{split}$$

🗳 arXiv: 2307.05307

Bin-Bin Chen (Poster)

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere: multicritical point and disorder phase

Bin-Bin Chen,¹ Xu Zhang,¹ Yuxuan Wang,²,^{*} Kai Sun,³,[†] and Zi Yang Meng¹,[‡]

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere: multicritical point and disorder phase

Bin-Bin Chen,¹ Xu Zhang,¹ Yuxuan Wang,²,^{*} Kai Sun,³,[†] and Zi Yang Meng¹,[‡]

-1.5

-2

-3

0 0.1 0.2

VP

VBS

1

2

1/N

0

-2.5

Disorder Operator and Rényi Entanglement Entropy of Symmetric Mass Generation

Zi Hong Liu,¹ Yuan Da Liao,^{2,3} Gaopei Pan,^{4,5} Weilun Jiang,⁶ Chao-Ming Jian,⁷ Yi-Zhuang You,⁸ Fakher F. Assaad,^{1,*} Zi Yang Meng,^{4,†} and Cenke Xu^{9,‡}

Disorder Operator and Rényi Entanglement Entropy of Symmetric Mass Generation

Zi Hong Liu,¹ Yuan Da Liao,^{2,3} Gaopei Pan,^{4,5} Weilun Jiang,⁶ Chao-Ming Jian,⁷ Yi-Zhuang You,⁸ Fakher F. Assaad,^{1,*} Zi Yang Meng,^{4,†} and Cenke Xu^{9,‡}

$$\hat{H} = -t \sum_{\langle ij \rangle, \alpha} (-1)^{\alpha} \left(\hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\alpha} + \hat{c}_{j\alpha}^{\dagger} \hat{c}_{i\alpha} \right) + V \sum_{i} \left(\hat{c}_{i1}^{\dagger} \hat{c}_{i2} \hat{c}_{i3}^{\dagger} \hat{c}_{i4} + \hat{c}_{i4}^{\dagger} \hat{c}_{i3} \hat{c}_{i2}^{\dagger} \hat{c}_{i1} \right)$$

$$= n \left[X_{M}(\theta) \right] \sim -al + s(\theta) \ln l + c - s(\theta) \sim \alpha_{s} \theta^{2}$$

$$\ln \left[X_{M3}(\theta) \right] \sim al + \beta(\theta)$$

$$S_{M}^{(2)} \sim al - \gamma$$

$$V = 0.0 + V = 1.0 + V = 2.0 + V = 0.5 + V = 1.5 + V = 3.0 + V = 1.5 + V = 3.0 + V = 1.5 + V = 1.5 + V = 3.0 + V = 1.5 + V$$

Entanglement entropy with incremental (Qiu Ku) method

 $S_A^{(2)}(l) = al - s \ln l - b$

Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

Jiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

- 🖗 Menghan Song, Jiarui Zhao, Lukas Janssen, Michael Scherer, ZYM, arXiv: 2307.02547
- Bin-Bin Chen, Xu Zhang, Yuxuan Wang, Kai Sun, ZYM, arXiv:2307.05307
- 🖗 Zi Hong Liu, Yuan Da Liao, Gaopei Pan, ..., Yi-Zhuang You, F. Assaad, ZYM, Cenke Xu, arXiv:2308.07380

$$-\ln|\langle X_M\rangle| = al - s\ln l - b$$

Yan-Cheng Wang, Meng Cheng, William Witczak-Krempa, ZYM, Nat Commun 12, 5347 (2021)

Yan-Cheng Wang, Nvsen Ma, Meng Cheng, ZYM, SciPost Phys. 13, 123 (2022)

Weilun Jiang, Bin-Bin Chen, Zi Hong Liu, Junchen Rong, F. Assaad, Meng Cheng, Kai Sun, ZYM, SciPost Phys. (2023)

🖉 Zi Hong Liu, Weilun Jiang, Bin-Bin Chen, Junchen Rong, Meng Cheng, Kai Sun, ZYM, F. Assaad, PRL 130, 266501 (2023)

(2+1)d SSB, O(3), Topological order Z2 QSL, GNY, FL, nFL, DQCP, SMG, ...