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0. Introduction

1. Regression
1.1 Multivariate Linear Regression (curve fitting)
1.2 Regularization (Lagrange multiplier)
1.3 Logistic Regression (Fermi-Dirac distribution)
1.4 Support Vector Machine (high-school geometry)

2. Dimensionality Reduction/feature extraction
2.1 Principal Component Analysis (order parameters)

2.2 Recommender Systems
2.3 Clustering (phase transition)
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3. Neural Networks
3.1 Biological neural networks
3.2 Mathematical representation
3.3 Factoring biological ingredient
3.4 Feed-forward neural networks
3.5 Learning algorithm
3.6 Universal Approximation Theorem



Al & Machine Learning Basics
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Clustering

& Grouping of data points

“Clustering” literally means
grouping similar things together
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Good references:

https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/

https://towardsdatascience.com/k-means-clustering-from-a-to-z-f6242a314e9a



https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://towardsdatascience.com/k-means-clustering-from-a-to-z-f6242a314e9a
https://towardsdatascience.com/k-means-clustering-from-a-to-z-f6242a314e9a

Clustering

& All the data points in a cluster should be similar to one another
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& The data points from different clusters should be as different as possible
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Evaluation Metrics for Clustering

2 Inertia: Sum of intracluster distances The lesser the inertia value, the better the cluster is
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Inertia: Sum of intracluster distances \/Z | x; = ¢l

Centroid

Intra cluster distance

Clusters are far apart

min(Inter cluster distance)

2 Dunn Index: Dunn Index =
max(Intra cluster distance)

~

Clusters are compact

Intra cluster distance Inter cluster distance



K-Means Clustering

Centroid-based or distance-based algorithm, minimise the sum of distances
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2 Step 1: Choose the number of clusters k ® 9
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Stopping Criteria

1. Centroids of newly formed clusters do not change
2. Points remain in the same cluster

3. Maximum number of iterations are reached



Challenges with the K-Means Clustering

The size of clusters is different
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K-Means++ Clustering

Specifies a procedure to initialise the cluster centres before moving forward with k-means, take k=3

2 Step 1: randomly pick a data point as a cluster centroid o

o ®
(not all the centroids but one) o O
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2 Step 2: calculate the distance of each data point with this centroid o ‘N

2 Step 3: the next centroid is the one whose distance is the farthest from the current centroid
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2 Step 4: take the distance of each point from its closest centroid and
the point having the largest distance will be selected as the next centroid
O
® 0
2 Step 5: continue with the K-means after initialising the centroids .;"
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Inertia
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& Elbow curve, x-axis represent the number of clusters and y-axis the evaluation metric
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